• Chinese Journal of Lasers
  • Vol. 47, Issue 5, 0500016 (2020)
Xingyuan Lu1, Chengliang Zhao1、*, and Yangjian Cai1、2、3、**
Author Affiliations
  • 1School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
  • 2School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China
  • 3Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Device, Jinan, Shandong 250014, China
  • show less
    DOI: 10.3788/CJL202047.0500016 Cite this Article Set citation alerts
    Xingyuan Lu, Chengliang Zhao, Yangjian Cai. Research Progress on Methods and Applications for Phase Reconstruction Under Partially Coherent Illumination[J]. Chinese Journal of Lasers, 2020, 47(5): 0500016 Copy Citation Text show less
    References

    [1] Miao J, Ishikawa T, Robinson I K et al. Beyond crystallography: diffractive imaging using coherent X-ray light sources[J]. Science, 348, 530-535(2015).

    [2] Pan A, Zhang Y, Zhao T Y et al. Quantitative phase microscopy imaging based on ptychography[J]. Laser & Optoelectronics Progress, 54, 040001(2017).

    [3] Pan X C, Liu C, Tao H et al. Phase imaging based on ptychography and progress on related key techniques[J]. Acta Optica Sinic, 40, 0111010(2020).

    [4] Liang Y S, Yao B L, Lei M. Applications of holographic optical tweezers in biological research[J]. Chinese Journal of Lasers, 47, 0207020(2020).

    [5] Mir M, Bhaduri B, Wang R et al. Quantitative phase imaging[M]. //Progress in Optics.[S.n.]: Elsevier, 133-217(2012).

    [6] Tahara T, Quan X Y, Otani R et al. Digital holography and its multidimensional imaging applications: a review[J]. Microscopy, 67, 55-67(2018).

    [7] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 12, 578-589(2018).

    [8] Cai S S, Zheng L F, Zeng B X et al. Quantitative phase imaging based on transport-of-intensity equation and differential interference contrast microscope and its application in breast cancer diagnosis[J]. Chinese Journal of Lasers, 45, 0307015(2018).

    [9] Zuo C, Chen Q, Sun J S et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 43, 0609002(2016).

    [10] Gabor D. Holography, 1948—1971[J]. Science, 177, 299-313(1972).

    [11] Gerchberg R W. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik, 34, 275(1971).

    [12] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [13] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 21, 2758-2759(1982).

    [14] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 85, 4795-4797(2004).

    [15] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 93, 023903(2004).

    [16] Miao J W, Charalambous P, Kirz J et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 400, 342-344(1999).

    [17] Dubois F. Requena M L N, Minetti C, et al. Partial spatial coherence effects in digital holographic microscopy with a laser source[J]. Applied Optics, 43, 1131-1139(2004).

    [18] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 33, 179-181(1994).

    [19] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).

    [20] Popescu G, Deflores L P, Vaughan J C et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 29, 2503-2505(2004).

    [21] Teague M R. Deterministic phase retrieval: a Green's function solution[J]. Journal of the Optical Society of America, 73, 1434-1441(1983).

    [22] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 49, 6-10(1984).

    [23] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 80, 2586(1998).

    [24] Gureyev T E, Nesterets Y I, Paganin D M et al. Linear algorithms for phase retrieval in the Fresnel region: partially coherent illumination[J]. Optics Communications, 259, 569-580(2006).

    [25] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 21, 14430-14441(2013).

    [26] Zuo C, Chen Q, Tian L et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective[J]. Optics and Lasers in Engineering, 71, 20-32(2015).

    [27] Jiang H D, Xu R, Chen C C et al. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution[J]. Physical Review Letters, 110, 205501(2013).

    [28] Shapiro D A, Yu Y S, Tyliszczak T et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 8, 765-769(2014).

    [29] Clark J N, Beitra L, Xiong G et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals[J]. Science, 341, 56-59(2013).

    [30] Seaberg M D, Zhang B S, Gardner D F et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography[J]. Optica, 1, 39-44(2014).

    [31] Jiang H, Song C, Chen C C et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 11234-11239(2010).

    [32] Nishino Y, Takahashi Y, Imamoto N et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction[J]. Physical Review Letters, 102, 018101(2009).

    [33] Ekeberg T, Svenda M, Abergel C et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser[J]. Physical Review Letters, 114, 098102(2015).

    [34] Chapman H N, Fromme P, Barty A et al. Femtosecond X-ray protein nanocrystallography[J]. Nature, 470, 73(2011).

    [35] Javidi B, Nomura T. Securing information by use of digital holography[J]. Optics Letters, 25, 28-30(2000).

    [36] Whitehead L W, Williams G J, Quiney H M et al. Diffractive imaging using partially coherent X rays[J]. Physical Review Letters, 103, 243902(2009).

    [37] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 32, 912-914(2007).

    [38] Flewett S, Quiney H M, Tran C Q et al. Extracting coherent modes from partially coherent wavefields[J]. Optics Letters, 34, 2198-2200(2009).

    [39] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).

    [40] Clark J N, Huang X J, Harder R J et al. Continuous scanning mode for ptychography[J]. Optics Letters, 39, 6066-6069(2014).

    [41] Clark J N, Huang X J, Harder R J et al. Dynamic imaging using ptychography[J]. Physical Review Letters, 112, 113901(2014).

    [42] Chen B, Abbey B, Dilanian R et al. Diffraction imaging: the limits of partial coherence[J]. Physical Review B, 86, 235401(2012).

    [43] Li P, Edo T, Batey D et al. Breaking ambiguities in mixed state ptychography[J]. Optics Express, 24, 9038-9052(2016).

    [44] Burdet N, Shi X W, Parks D et al. Evaluation of partial coherence correction in X-ray ptychography[J]. Optics Express, 23, 5452-5467(2015).

    [45] Lurie M. Fourier-transform holograms with partially coherent light: holographic measurement of spatial coherence[J]. Journal of the Optical Society of America, 58, 614-619(1968).

    [46] Parks D H, Shi X, Kevan S D. Partially coherent X-ray diffractive imaging of complex objects[J]. Physical Review A, 89, 063824(2014).

    [47] Gureyev T E, Paganin D M, Stevenson A W et al. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 93, 068103(2004).

    [48] Shao Y F, Lu X Y, Konijnenberg S et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography[J]. Optics Express, 26, 4479-4490(2018).

    [49] Lu X Y, Shao Y F, Zhao C L et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 1, 016005(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ190130000074VsYu2x

    [50] Konijnenberg A P, Lu X Y, Liu L X et al. Non-iterative method for phase retrieval and coherence characterization by focus variation using a fixed star-shaped mask[J]. Optics Express, 26, 9332-9343(2018).

    [51] Yang Y J, Zhu X L, Zeng J et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation[J]. Nanophotonics, 7, 677-682(2018).

    [52] Zeng J, Liu X L, Wang F et al. Partially coherent fractional vortex beam[J]. Optics Express, 26, 26830-26844(2018).

    [53] Dong M, Lu X Y, Zhao C L et al. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam[J]. Optics Express, 26, 33035-33043(2018).

    [54] Peng X F, Lu X Y, Liu X L et al. Generation and propagation of a Hermite-Gaussian correlated Schell-model LG0l beam[J]. Applied Sciences, 9, 610(2019).

    [55] Lu X Y, Zhao C L, Shao Y F et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam[J]. Applied Physics Letters, 114, 201106(2019).

    [56] Zeng J, Lu X Y, Liu L X et al. Simultaneous measurement of the radial and azimuthal mode indices of a higher-order partially coherent vortex beam based on phase detection[J]. Optics Letters, 44, 3881-3884(2019).

    [57] Gureyev T, Nugent K. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 133, 339-346(1997).

    [58] Mandel L, Wolf E[M]. Optical coherence and quantum optics(1995).

    [59] Wolf E[M]. Introduction to the theory of coherence and polarization of light(2007).

    [60] Kato Y, Mima K, Miyanaga N et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057(1984).

    [61] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 19, 1794-1802(2002).

    [62] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 20, 856-866(2003).

    [63] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 32, 3531-3533(2007).

    [64] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Optics Communications, 25, 293-296(1978).

    [65] Collett E, Wolf E. Is complete spatial coherence necessary for the generation of highly directional light beams?[J]. Optics Letters, 2, 27-29(1978).

    [66] Chen Y H, Gu J X, Wang F et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 91, 013823(2015).

    [67] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Optics Letters, 36, 4104-1406(2011).

    [68] Wang F, Chen Y H, Liu X L et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles[J]. Optics Express, 24, 23735-23746(2016).

    [69] Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam[J]. Optics Letters, 39, 2549-2552(2014).

    [70] Liang C H, Mi C K, Wang F et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 25, 9872-9885(2017).

    [71] Liang C H, Zhu X L, Mi C K et al. High-quality partially coherent Bessel beam array generation[J]. Optics Letters, 43, 3188-3191(2018).

    [72] Gu Y L, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. Journal of the Optical Society of America A, 27, 2621-2629(2010).

    [73] Liang C H, Wu G F, Wang F et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Optics Express, 25, 28352-28362(2017).

    [74] Chen Y H, Cai Y J. Laser coherence modulation and its applications[J]. Acta Optica Sinica, 36, 1026002(2016).

    [75] Zeng J, Chen Y H, Liu X L et al. Research progress on partially coherent vortex beams[J]. Acta Optica Sinica, 39, 0126004(2019).

    [76] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [77] Zhao C L, Cai Y J, Lu X H et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 17, 1753-1765(2009).

    [78] Ng J, Lin Z F, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 104, 103601(2010).

    [79] Coutts D W. Double-pass copper vapor laser master-oscillator power-amplifier systems: generation of flat-top focused beams for fiber coupling and percussion drilling[J]. IEEE Journal of Quantum Electronics, 38, 1217-1224(2002).

    [80] Nishi N, Jitsuno T, Tsubakimoto K et al. Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target[J]. Optical Review, 7, 216-220(2000).

    [81] Wang F, Liu X L, Yuan Y S et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 38, 1814-1816(2013).

    [82] Ma L Y, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 23, 1848-1856(2015).

    [83] Liu X L, Wang F, Liu L et al. Complex degree of coherence measurement for classical statistical fields[J]. Optics Letters, 42, 77-80(2017).

    [84] Saastamoinen K, Tervo J, Turunen J et al. Spatial coherence measurement of polychromatic light with modified Young's interferometer[J]. Optics Express, 21, 4061-4071(2013).

    [85] Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics[J]. Optica, 2, 95-103(2015).

    [86] Wood J K, Sharma K A, Cho S et al. Using shadows to measure spatial coherence[J]. Optics Letters, 39, 4927-4930(2014).

    [87] Raymer M G, Beck M. McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 72, 1137(1994).

    [88] Arimoto H, Ohtsuka Y. Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer[J]. Optics Letters, 22, 958(1997).

    [89] Bhattacharjee A, Aarav S, Jha A K. Two-shot measurement of spatial coherence[J]. Applied Physics Letters, 113, 051102(2018).

    [90] Koivurova M, Partanen H, Lahyani J et al. Scanning wavefront folding interferometers[J]. Optics Express, 27, 7738(2019).

    [91] Sandberg R L, Raymondson D A. La-o-vorakiat C, et al. Tabletop soft-x-ray Fourier transform holography with 50 nm resolution[J]. Optics Letters, 34, 1618-1620(2009).

    Xingyuan Lu, Chengliang Zhao, Yangjian Cai. Research Progress on Methods and Applications for Phase Reconstruction Under Partially Coherent Illumination[J]. Chinese Journal of Lasers, 2020, 47(5): 0500016
    Download Citation