• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 9, 090601 (2024)
Nan CHEN, Fengrui XIANG, Yanan HE*, Yingwei WU..., Jing ZHANG, Guanghui SU, Wenxi TIAN and Suizheng QIU|Show fewer author(s)
Author Affiliations
  • Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.090601 Cite this Article
    Nan CHEN, Fengrui XIANG, Yanan HE, Yingwei WU, Jing ZHANG, Guanghui SU, Wenxi TIAN, Suizheng QIU. Development and validation of models for fuel rod oxidation and hydrogen pick-up behaviors in pressurized water reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090601 Copy Citation Text show less
    References

    [1] Ritchie I G. Waterside corrosion of zirconium alloys in nuclear power plants[R]. Technical Report IAEA TECDOC 996(1998).

    [2] Gilmore P M, Klepfer H H, Sorensen J M. EPRI PWR fuel cladding corrosion (PFCC) model Volume 1: theory and users manual[R]. Technical Report TR-105387-V1(1995).

    [3] Schanz G. Recommendations and supporting information on the choice of zirconium oxidation models in severe accident codes[R]. Technnical Report FZKA 6827, SAM-COLOSSP043(2003).

    [4] Courty O, Motta A T, Hales J D. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding[J]. Journal of Nuclear Materials, 452, 311-320(2014).

    [5] HE Xiaoqiang, YU Hongxing, LI Feng et al. A cladding oxidation model based on diffusion equations[J]. Nuclear Power Engineering, 33, 44-49(2012).

    [6] ZHANG Zhuohua, PENG Shinian, YU Junchong. Mechanism of oxygen diffusion in UO2-Zr dispersion plate-type fuel[J]. Atomic Energy Science and Technology, 49, 1434-1439(2015).

    [7] Wang D, Zhang Y P, Wu S H et al. Development of oxidation model for zirconium alloy cladding and application in the analysis of cladding behavior under loss of coolant accident[J]. Journal of Nuclear Materials, 561, 153564(2022).

    [8] CUI Yiran, YANG Zhongbo. Effect of hydrogen on mechanical properties of zirconium alloy for nuclear use[J]. Materials Reports, 36, 266-270(2022).

    [9] ZHOU Bangxin. Effect of hydrochemistry on corrosion behavior of fuel element cladding[J]. Nuclear Power Engineering, 19, 67-72, 77(1998).

    [10] Permann C J, Gaston D R, Andrš D et al. MOOSE: enabling massively parallel multiphysics simulation[J]. SoftwareX, 11, 100430(2020).

    [11] DENG Chaoqun, XIANG Fengrui, HE Yanan et al. Development and validation of fuel rod performance analysis code based on MOOSE platform[J]. Atomic Energy Science and Technology, 55, 1296-1303(2021).

    [12] He Y N, Niu Y H, Xiang F R et al. Preliminary development of a multi-physics coupled fuel performance code for annular fuel analysis under normal conditions[J]. Nuclear Engineering and Design, 393, 111810(2022).

    [13] Xiang F R, He Y N, Niu Y H et al. A new method to simulate dispersion plate-type fuel assembly in a multi-physics coupled way[J]. Annals of Nuclear Energy, 166, 108734(2022).

    [14] Yue Z Y, He Y N, Xiang F R et al. Coupled neutronics, thermal-hydraulics, and fuel performance analysis of dispersion plate-type fuel assembly in a cohesive way[J]. Nuclear Engineering and Design, 413, 112548(2023).

    [15] DENG Chaoqun, XIANG Fengrui, HE Yanan et al. Development and validation of fuel rod performance transient analysis code based on MOOSE platform[J]. Atomic Energy Science and Technology, 55, 1429-1439(2021).

    [16] Garzarolli F, Jung W. Review of PWR fuel rod waterside corrosion behavior[R]. Technical Report EPRI NP-2789 Project 1250 Final Report(1982).

    [18] Couet A, Motta A T, Comstock R J. Hydrogen pickup measurements in zirconium alloys: relation to oxidation kinetics[J]. Journal of Nuclear Materials, 451, 1-13(2014).

    [19] Kammenzind B F, Franklin D G, Duffin W J et al. Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4, WAPD-T-3047; CONF-950926-1 ON: DE96011466; TRN: 96:014615[R](1996).

    [20] Papin J, Cazalis B, Frizonnet J M et al. Summary and interpretation of the CABRI REP-Na program[J]. Nuclear Technology, 157, 230-250(2007).

    [21] Nantes K R B, Jin M M, Motta A T. Modeling hydrogen localization in Zircaloy cladding subjected to temperature gradients[J]. Journal of Nuclear Materials, 589, 154853(2024).

    [22] Merlino J. Experiments in hydrogen distribution in thermal gradients calculated using bison[D](2019).

    [23] Courty O, Motta A T, Hales J D. Modeling and simulation of hydrogen behavior in Zircaloy-4 fuel cladding[J]. Journal of Nuclear Materials, 452, 311-320(2014).

    [24] Zhang J H. Hydruration du Zircaloy-4 et Etude de la distribution de l'Hydrogène dans une Gaine de Combustible REP[D](1993).

    Nan CHEN, Fengrui XIANG, Yanan HE, Yingwei WU, Jing ZHANG, Guanghui SU, Wenxi TIAN, Suizheng QIU. Development and validation of models for fuel rod oxidation and hydrogen pick-up behaviors in pressurized water reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(9): 090601
    Download Citation