• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1107001 (2021)
Yang Liu1, Dongyuan Liu1, Yao Zhang1, Lu Bai1, and Feng Gao1、2、*
Author Affiliations
  • 1College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202148.1107001 Cite this Article Set citation alerts
    Yang Liu, Dongyuan Liu, Yao Zhang, Lu Bai, Feng Gao. A Portable fNIRS-Topography System for BCI Applications: Full Parallel Detection and Pilot Paradigm Validation[J]. Chinese Journal of Lasers, 2021, 48(11): 1107001 Copy Citation Text show less
    References

    [1] Azhari A, Truzzi A, Neoh M J Y et al. A decade of infant neuroimaging research: what have we learned and where are we going?[J]. Infant Behavior and Development, 58, 101389(2020). http://www.sciencedirect.com/science/article/pii/S0163638319301195

    [2] Zhao J, Qiao J R M T, Ding X T et al. fNIRS signal motion correction algorithm based on mathematical morphology and median filter[J]. Acta Optica Sinica, 40, 2230002(2020).

    [3] Qiao Y B, Chen X, Guo Z Y et al. Near-infrared optical imaging based on time-domain photon information[J]. Acta Optica Sinica, 39, 0412011(2019).

    [4] Saikia M J, Besio W G, Mankodiya K et al. WearLight: toward a wearable, configurable functional NIR spectroscopy system for noninvasive neuroimaging[J]. IEEE Transactions on Biomedical Circuits and Systems, 13, 91-102(2019). http://ieeexplore.ieee.org/document/8491337

    [5] Aslin R N. Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy[J]. Cognitive Neuropsychology, 29, 7-33(2012). http://www.ncbi.nlm.nih.gov/pubmed/22329690

    [6] Erdoĝan S B, Özsarfati E, Dilek B et al. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI[J]. Journal of Neural Engineering, 16, 026029(2019). http://www.ncbi.nlm.nih.gov/pubmed/30634177

    [7] Bejm K, Wojtkiewicz S, Sawosz P et al. Influence of contrast-reversing frequency on the amplitude and spatial distribution of visual cortex hemodynamic responses[J]. Biomedical Optics Express, 10, 6296-6312(2019). http://www.ncbi.nlm.nih.gov/pubmed/31853401

    [8] Zhao H B, Cooper R J. Review of recent progress toward a fiberless, whole-scalp diffuse optical tomography system[J]. Neurophotonics, 5, 011012(2017).

    [9] Chitnis D, Cooper R J, Dempsey L et al. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system[J]. Biomedical Optics Express, 7, 4275-4288(2016). http://europepmc.org/articles/PMC5102535/

    [10] Piper S K, Krueger A, Koch S P et al. A wearable multi-channel fNIRS system for brain imaging in freely moving subjects[J]. NeuroImage, 85, 64-71(2014). http://www.ncbi.nlm.nih.gov/pubmed/23810973

    [11] Liu D Y, Wang B Y, Pan T T et al. Toward quantitative near infrared brain functional imaging: lock-in photon counting instrumentation combined with tomographic reconstruction[J]. IEEE Access, 7, 86829-86842(2019). http://ieeexplore.ieee.org/document/8744518/

    [12] Hui Z F, Xie J B, He X D et al. Multichannel diffuse correlation spectroscopy topography system[J]. Chinese Journal of Lasers, 46, 0907002(2019).

    [13] Xia D D, Han G, Yu X Y et al. Phantom experimental validation of near floating reference measuring method in non-invasive blood glucose sensing[J]. Spectroscopy and Spectral Analysis, 37, 1941-1945(2017).

    [14] Eggebrecht A T, White B R, Ferradal S L et al. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping[J]. NeuroImage, 61, 1120-1128(2012). http://www.ncbi.nlm.nih.gov/pubmed/22330315

    [15] Pinti P, Aichelburg C, Lind F et al. Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks[J]. Journal of Visualized Experiments: JoVE, 53336(2015).

    [16] Shin J, Kwon J, Choi J et al. Ternary near-infrared spectroscopy brain-computer interface with increased information transfer rate using prefrontal hemodynamic changes during mental arithmetic, breath-holding, and idle state[J]. IEEE Access, 6, 19491-19498(2018). http://ieeexplore.ieee.org/document/8329143

    [17] Weyand S, Schudlo L, Nishiuchi K T et al. Usability and performance-informed selection of personalized mental tasks for an online near-infrared spectroscopy brain-computer interface[J]. Neurophotonics, 2, 025001(2015). http://www.tandfonline.com/servlet/linkout?suffix=CIT0039&dbid=8&doi=10.1080%2F17483107.2017.1357212&key=26158005

    [18] Shin J, von Lühmann A, Blankertz B et al. Open access dataset for EEG NIRS single-trial classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25, 1735-1745(2017). http://ieeexplore.ieee.org/document/7742400/

    Yang Liu, Dongyuan Liu, Yao Zhang, Lu Bai, Feng Gao. A Portable fNIRS-Topography System for BCI Applications: Full Parallel Detection and Pilot Paradigm Validation[J]. Chinese Journal of Lasers, 2021, 48(11): 1107001
    Download Citation