• Optical Instruments
  • Vol. 41, Issue 3, 61 (2019)
MA Chao* and ZHANG Ling
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1005-5630.2019.03.010 Cite this Article
    MA Chao, ZHANG Ling. Tuning of the fluorescence enhancement of nanoporous gold by silica coating[J]. Optical Instruments, 2019, 41(3): 61 Copy Citation Text show less
    References

    [1] CHEN L Y, ZHANG L, FUJITA T, et al. Surface-enhanced Raman scattering of silver@nanoporous copper core-shell composites synthesized by an in situ sacrificial template approach[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14195 – 14199.

    [2] ZHANG L, LANG X Y, HIRATA A, et al. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement[J]. ACS Nano, 2011, 5(6): 4407 – 4413.

    [3] QIAN L H, YAN X Q, FUJITA T, et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements[J]. Applied Physics Letters, 2007, 90(15): 153120.

    [4] SONG Y K, ZHANG L, CHEN M W, et al. Single quantum dot fluorescence enhancement by tunable nanoporous gold[C]//Proceedings of the 12th IEEE International Conference on Nanotechnology. Birmingham: IEEE, 2012: 1-5.

    [5] LANG X Y, GUAN P F, ZHANG L, et al. Size dependence of molecular fluorescence enhancement of nanoporous gold[J]. Applied Physics Letters, 2010, 96(7): 073701.

    [7] GANDRA N, PORTZ C, TIAN L M, et al. Probing distance‐dependent plasmon‐enhanced near‐infrared fluorescence using polyelectrolyte multilayers as dielectric spacers[J]. Angewandte Chemie, 2014, 126(3): 885 – 889.

    [8] FENG A L, YOU M L, TIAN L M, et al. Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers[J]. Scientific Reports, 2015, 5: 7779.

    [9] DING Y, KIM Y J, ERLEBACHER J. Nanoporous gold leaf: “ Ancient technology” /advanced material[J]. Advanced Materials, 2004, 16(21): 1897 – 1900.

    [10] ERLEBACHER J, AZIZ M J, KARMA A, et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410(6827): 450 – 453.

    [11] FUJITA T, QING L H, INOKE K, et al. Three-dimensional morphology of nanoporous gold[J]. Applied Physics Letters, 2008, 92(25): 251902.

    [12] LANG X Y, GUAN P F, ZHANG L, et al. Characteristic length and temperature dependence of surface enhanced Raman scattering of nanoporous gold[J]. The Journal of Physical Chemistry C, 2009, 113(25): 10956 – 10961.

    [13] LANG X Y, CHEN L Y, GUAN P F, et al. Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios[J]. Applied Physics Letters, 2009, 94(21): 213109.

    [14] GORELIKOV I, MATSUURA N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles[J]. Nano Letters, 2008, 8(1): 369 – 373.

    [15] SANZ-ORTIZ M N, SENTOSUN K, BALS S, et al. Templated growth of surface enhanced raman scattering-active branched gold nanoparticles within radial mesoporous silica shells[J]. ACS Nano, 2015, 9(10): 10489 – 10497.

    [16] ZHANG L, SONG Y K, FUJITA T, et al. Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold[J]. Advanced Materials, 2014, 26(8): 1289 – 1294.