[1] Shiner B. The impact of fiber laser technology on the world wide material processing market[C], AF2J. 1(2013).
[2] Lin A X, Xiao Q R, Ni L et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 48, 0916003(2021).
[3] Li F Y, Li Y, Song H Q et al. The national optical fiber material devices achieve high SRS rejection ratio of 20.88 kW output[J]. Chinese Journal of Lasers, 48, 2116002(2021).
[4] Wei L W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo[J]. Optics Letters, 41, 5817-5820(2016).
[5] Mourou G, Brocklesby B, Tajima T et al. The future is fibre accelerators[J]. Nature Photonics, 7, 258-261(2013).
[6] Breitkopf S, Eidam T, Klenke A et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 3, e211(2014).
[7] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).
[8] Gray S, Liu A P, Walton D T et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 15, 17044-17050(2007).
[9] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).
[10] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).
[11] Pulford B, Holten R, Matniyaz T et al. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier[J]. Optics Letters, 46, 4458-4461(2021).
[12] Liu A P. Stimulated Brillouin scattering in single-frequency fiber amplifiers with delivery fibers[J]. Optics Express, 17, 15201-15209(2009).
[13] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).
[14] Engin D, Lu W, Akbulut M et al. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near-diffraction limited beam-quality for coherent combining application[J]. Proceedings of SPIE, 7914, 791407(2011).
[15] Wang Y S, Ma Y, Sun Y H et al. 2.62-kW, 30-GHz linearly polarized all-fiber laser with narrow linewidth and near-diffraction-limit beam quality[J]. Chinese Journal of Lasers, 46, 1215001(2019).
[16] Yu C X, Shatrovoy O, Fan T Y et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 41, 5202-5205(2016).
[17] Panbiharwala Y, Harish A V, Feng Y J et al. Stimulated Brillouin scattering mitigation using optimized phase modulation waveforms in high power narrow linewidth Yb-doped fiber amplifiers[J]. Optics Express, 29, 17183-17200(2021).
[18] White J O, Young J T, Wei C L et al. Seeding fiber amplifiers with piecewise parabolic phase modulation for high SBS thresholds and compact spectra[J]. Optics Express, 27, 2962-2974(2019).
[19] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).
[20] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).
[21] Shen H, Lou Q H, Quan Z et al. Narrow-linewidth all-fiber amplifier with up to 3.01 kW output power based on commercial 20/400 μm active fiber and counterpumped configuration[J]. Applied Optics, 58, 3053-3058(2019).
[22] Ren S, Chen Y S, Ma P F et al. 4.5 kW, 0.33 nm near single mode narrow linewidth polarization maintaining fiber laser[J]. High Power Laser and Particle Beams, 34, 137(2022).
[23] Flores A, Robin C, Lanari A et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 22, 17735-17744(2014).
[24] Anderson B, Flores A, Holten R et al. Comparison of phase modulation schemes for coherently combined fiber amplifiers[J]. Optics Express, 23, 27046-27060(2015).
[25] Anderson B, Flores A, Dajani I. Enhanced psuedo-random phase modulation for high power fiber amplifiers[C], SM1Q.7(2016).
[26] Kanskar M, Zhang J, Koponen J et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 10512, 105120F(2018).
[27] Liu M Z, Yang Y F, Shen H et al. 1.27 kW, 2.2 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap[J]. Scientific Reports, 10, 629(2020).
[28] Liu M Z, Li B L, Yang Y F et al. Instantaneous response and suppression of SBS process in a short fiber system with binary sequence phase modulation[J]. Optics Letters, 46, 5802-5805(2021).
[29] Yang Y F, Li B L, Liu M Z et al. Optimization and visualization of phase modulation with filtered and amplified maximal-length sequence for SBS suppression in a short fiber system: a theoretical treatment[J]. Optics Express, 29, 16781-16803(2021).
[30] Li B L, Liu M Z, Yang Y F et al. Effective Brillouin gain spectra broadening for SBS suppression based on pseudo random bit sequence phase modulation in fiber system[J]. IEEE Photonics Journal, 13, 1-5(2021).
[31] Zeringue C, Dajani I, Naderi S et al. A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light[J]. Optics Express, 20, 21196-21213(2012).