• Chinese Optics Letters
  • Vol. 22, Issue 4, 041402 (2024)
Xiaobo Mi1, Chaonan Lin1, Yongsheng Hu1、*, Houjie Ma1, Jiuru He1, Fengying Ma1, Li Fan2、**, and Chongxin Shan1、***
Author Affiliations
  • 1School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
  • 2College of Physics Science and Technology, Institute of Applied Photonic Technology, Yangzhou University, Yangzhou 225002, China
  • show less
    DOI: 10.3788/COL202422.041402 Cite this Article Set citation alerts
    Xiaobo Mi, Chaonan Lin, Yongsheng Hu, Houjie Ma, Jiuru He, Fengying Ma, Li Fan, Chongxin Shan. Eye-safe intra-cavity diamond cascaded Raman laser with high peak-power and narrow linewidth[J]. Chinese Optics Letters, 2024, 22(4): 041402 Copy Citation Text show less
    References

    [1] S. H. Yun, S. J. J. Kwok. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 1, 0008(2017).

    [2] Y. X. Zhang, A. Carballo, H. T. Yang et al. Perception and sensing for autonomous vehicles under adverse weather conditions: a survey. ISPRS J. Photogramm. Remote Sens., 196, 146(2023).

    [3] D. Wu, L. Yang, X. Chen et al. Multi-channel pseudo-random coding single-photon ranging and imaging. Chin. Opt. Lett., 20, 021202(2022).

    [4] W. L. Yu, Q. R. Xiao, L. L. Wang et al. 219.6 W large-mode-area Er:Yb codoped fiber amplifier operating at 1600 nm pumped by 1018 nm fiber lasers. Opt. Lett., 46, 2192(2021).

    [5] W. Li, Q. Qiu, L. Yu et al. Er/Yb co-doped 345-W all-fiber laser at 1535 nm using hybrid fiber. Opt. Lett., 48, 3027(2023).

    [6] H. Lin, Y. Feng, P. Barua et al. 405 W erbium-doped large-core fiber laser. Laser Congress 2017 (ASSL, LAC), ATh4A.2(2017).

    [7] I. Pavlov, E. Dulgergil, E. Ilbey et al. Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 1.55 µm. Opt. Lett., 39, 2695(2014).

    [8] S. Setzler, M. Shaw, M. Kukla et al. A 400 W cryogenic Er:YAG laser at 1645 nm. Proc. SPIE, 7686, 76860C(2010).

    [9] L. Harris, M. Clark, P. Veitch et al. Compact cavity-dumped Q-switched Er:YAG laser. Opt. Lett., 41, 4309(2016).

    [10] J. Meng, C. Li, Z. Cong et al. Investigations on beam quality improvement of an NCPM-KTA-based high energy optical parametric oscillator using an unstable resonator with a Gaussian reflectivity mirror [Invited]. Chin. Opt. Lett., 20, 091401(2022).

    [11] Y. Duan, H. Zhu, Y. Ye et al. Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser. Opt. Lett., 39, 1314(2014).

    [12] H. Zhu, J. Guo, Y. Duan et al. Efficient 1.7 µm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser. Opt. Lett., 43, 345(2018).

    [13] R. Casula, J. P. Penttinen, M. Guina et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation. Optica, 5, 1406(2018).

    [14] O. Lux, S. Sarang, O. Kitzler et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876(2016).

    [15] R. Frey, A. Demartino, F. Pradere. High-efficiency pulse compression with intracavity Raman oscillators. Opt. Lett., 8, 437(1983).

    [16] Y. Duan, Y. Sun, H. Zhu et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission. Opt. Lett., 45, 2564(2020).

    [17] Z.-P. Wang, D.-W. Hu, X. Fang et al. Eye-safe Raman laser at 1.5 µm based on BaWO4 crystal. Chin. Phys. Lett., 25, 122(2008).

    [18] H. N. Zhang, P. Li, Q. P. Wang et al. High-power dual-wavelength eye-safe ceramic Nd:YAG/SrWO4 Raman laser operating at 1501 and 1526 nm. Appl. Opt., 53, 7189(2014).

    [19] S. D. Liu, J. J. Zhang, Z. L. Gao et al. Generation of 1.3 µm and 1.5 µm high-energy Raman radiations in alpha-BaTeMo2O9 crystals. Opt. Mater., 36, 760(2014).

    [20] L. Fan, J. Shen, X. Y. Wang et al. Efficient continuous-wave eye-safe Nd:YVO4 self-Raman laser at 1.5 µm. Opt. Lett., 46, 3183(2021).

    [21] Y. F. Chen. Efficient 1521-nm Nd:GdVO4 Raman laser. Opt. Lett., 29, 2632(2004).

    [22] H. Chen, Q. Lou, J. Dong et al. High-efficiency 1598.5-nm third Stokes Raman laser based on barium nitrate crystal. Chin. Opt. Lett., 4, 404(2006).

    [23] Q. Gong, M. Zhang, C. Lin et al. Analysis of thermal effects in kilowatt high power diamond Raman lasers. Crystals, 12, 1824(2022).

    [24] V. G. Savitski, S. Reilly, A. J. Kemp. Steady-state Raman gain in diamond as a function of pump wavelength. IEEE J. Quantum Electron., 49, 218(2013).

    [25] A. A. Kaminskii, V. G. Ralchenko, V. I. Konov. CVD-diamond–a novel χ(3)-nonlinear active crystalline material for SRS generation in very wide spectral range. Laser Phys. Lett., 3, 171(2006).

    [26] R. J. Williams, O. Kitzler, Z. X. Bai et al. High power diamond Raman lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1602214(2018).

    [27] S. Antipov, A. Sabella, R. J. Williams et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam. Opt. Lett., 44, 2506(2019).

    [28] D. T. Echarri, K. Chrysalidis, V. N. Fedosseev et al. Broadly tunable linewidth-invariant Raman Stokes comb for selective resonance photoionization. Opt. Express, 28, 8589(2020).

    [29] W. Lubeigt, G. M. Bonner, J. E. Hastie et al. An intra-cavity Raman laser using synthetic single-crystal diamond. Opt. Express, 18, 16765(2010).

    [30] H. L. Yang, Y. Chen, K. L. Ding et al. Investigation of a highly compact intracavity actively Q-switched cascade diamond Raman laser. Appl. Opt., 59, 9715(2020).

    [31] L. Fan, X. Wang, X. Zhao et al. First-Stokes and second-Stokes multi-wavelength continuous-wave operation in Nd:YVO4/BaWO4 Raman laser under in-band pumping. Chin. Opt. Lett., 18, 111401(2020).

    [32] Q. Sheng, R. Li, A. J. Lee et al. A single-frequency intracavity Raman laser. Opt. Express, 27, 8540(2019).

    [33] H. J. Ma, X. Wei, S. B. Dai et al. Intra-cavity diamond Raman laser at 1634 nm. Opt. Express, 29, 31156(2021).

    [34] S. W. Peng, X. X. Huang, S. H. Ding. Folded-resonator LD side-pumped acousto-optically Q-switched Nd:YAG/SrWO4 solid-state Raman laser. Infrared Phys. Technol., 127, 104368(2022).

    [35] H. H. Chen, W. J. Hu, X. Wei et al. High beam quality yellow laser at 588 nm by an intracavity frequency-doubled composite Nd:YVO4 Raman laser. Opt. Express, 31, 8494(2023).

    [36] J. M. Jelínek, O. Kitzler, H. Jelínková et al. CVD-diamond external cavity nanosecond Raman laser operating at 1.63 µm pumped by 1.34 µm Nd:YAP laser. Laser Phys. Lett., 9, 35(2012).

    [37] H. Zhu, Y. Duan, G. Zhang et al. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite. Opt. Lett., 34, 2763(2009).

    [38] J. Guo, H. Zhu, S. Chen et al. Yellow, lime and green emission selectable by BBO angle tuning in Q-switched Nd:YVO4 self-Raman laser. Laser Phys. Lett., 15, 075803(2018).

    [39] R. J. Williams, D. J. Spence, O. Lux et al. High-power continuous-wave Raman frequency conversion from 1.06 µm to 1.49 µm in diamond. Opt. Express, 25, 749(2017).

    [40] E. Granados, C. Granados, R. Ahmed et al. Spectra synthesis of multimode lasers to the Fourier limit in integrated Fabry-Perot diamond resonators. Optica, 9, 317(2022).

    [41] H. J. Ma, X. Wei, H. Zhao et al. Nanosecond pulsed single longitudinal mode diamond Raman laser in the 1.6 µm spectral region. Opt. Lett., 47, 2210(2022).

    [42] N. Ismail, C. C. Kores, D. Geskus et al. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express, 24, 16366(2016).

    [43] J. Liu, X. Ding, P. Jiang et al. High-performance second-Stokes generation of a Nd:YVO4/YVO4 Raman laser based on a folded coupled cavity. Opt. Express, 26, 10171(2018).

    [44] P. B. Jiang, J. S. Ni, H. W. Zhang et al. High-power and high-energy Nd:YAG-Nd:YVO4 hybrid gain Raman yellow laser. Opt. Express, 28, 24088(2020).

    [45] J. A. Piper, H. M. Pask. Crystalline Raman lasers. IEEE J. Sel. Top. Quantum Electron., 13, 692(2007).

    [46] Q. Sheng, X. Ding, B. Li et al. Efficient Nd:YVO4 self-Raman laser in-band pumped by wavelength-locked laser diode at 878.7 nm. J. Opt., 16, 105206(2014).

    Xiaobo Mi, Chaonan Lin, Yongsheng Hu, Houjie Ma, Jiuru He, Fengying Ma, Li Fan, Chongxin Shan. Eye-safe intra-cavity diamond cascaded Raman laser with high peak-power and narrow linewidth[J]. Chinese Optics Letters, 2024, 22(4): 041402
    Download Citation