• Chinese Journal of Lasers
  • Vol. 46, Issue 5, 0508016 (2019)
Weiwei Pan1、3, Jiaqi Zhou1, Lei Zhang2, and Yan Feng1、3、*
Author Affiliations
  • 1Laboratory of High Power Fiber Laser Techniques, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2PreciLasers Co., Ltd., Shanghai 201800, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201946.0508016 Cite this Article Set citation alerts
    Weiwei Pan, Jiaqi Zhou, Lei Zhang, Yan Feng. Research Advances in Ultrafast Raman Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508016 Copy Citation Text show less
    References

    [1] Krausz F, Fermann M E, Brabec T et al. Femtosecond solid-state lasers[J]. IEEE Journal of Quantum Electronics, 28, 2097-2122(1992).

    [2] Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 424, 831-838(2003). http://europepmc.org/abstract/MED/12917697

    [3] Ell R, Morgner U, Kärtner F X et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser[J]. Optics Letters, 26, 373-375(2001). http://europepmc.org/abstract/MED/18040328

    [4] Herink G, Jalali B, Ropers C et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate[J]. Nature Photonics, 10, 321-326(2016). http://www.nature.com/abstractpagefinder/10.1038/nphoton.2016.38

    [5] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2, 219-225(2008). http://www.nature.com/nphoton/journal/v2/n4/abs/nphoton.2008.47.html

    [6] Kerse C. Kalaycıo lu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 537, 84-88(2016).

    [7] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [8] Kieu K, Renninger W H, Chong A et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 34, 593-595(2009). http://www.ncbi.nlm.nih.gov/pubmed/19252562

    [9] Zhang L, Zhou J, Wang Z et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 26, 1314-1316(2014). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6808485

    [10] Zhou J, Pan W, Gu X et al. Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber[J]. Optics Express, 26, 4166-4171(2018). http://www.onacademic.com/detail/journal_1000040493598510_0217.html

    [11] Kim J, Song Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 8, 465-540(2016). http://www.opticsinfobase.org/aop/abstract.cfm?uri=aop-8-3-465

    [12] Oktem B, Ülgüdür C, Ilday F Ö. Soliton-similariton fibre laser[J]. Nature Photonics, 4, 307-311(2010). http://www.nature.com/articles/nphoton.2010.33

    [13] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5706017

    [14] Chang W, Ankiewicz A. Soto-Crespo J M, et al. Dissipative soliton resonances[J]. Physical Review A, 78, 023830(2008).

    [15] Huang Y, Hu Z, Cui H et al. Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser[J]. Optics Letters, 41, 4056-4059(2016). http://europepmc.org/abstract/MED/27607971

    [16] Liu X, Yao X, Cui Y. Real-time observation of the buildup of soliton molecules[J]. Physical Review Letters, 121, 023905(2018).

    [17] Dyball H. Yellow lasers hit the spot[J]. Electronics Letters, 46, 545(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5450996

    [18] Grosche G, Lipphardt B, Schnatz H. Optical frequency synthesis and measurement using fibre-based femtosecond lasers[J]. The European Physical Journal D, 48, 27-33(2008). http://link.springer.com/article/10.1140/epjd/e2008-00178-y

    [19] Feng Y, Zhang L[M]. Raman fiber lasers, 207(2017).

    [20] Supradeepa V R, Feng Y, Nicholson J W. Raman fiber lasers[J]. Journal of Optics, 19, 023001(2017).

    [21] Zhang L, Jiang H, Cui S et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 8, 889-895(2014). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201400055/pdf

    [22] Zhang L, Jiang H, Yang X et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017). http://europepmc.org/abstract/MED/28198414

    [23] Bromage J. Raman amplification for fiber communications systems[J]. Journal of Lightwave Technology, 22, 79-93(2004). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1266681

    [24] Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 44, 0201005(2017).

    [25] Dong J, Zhang L, Zhou Jet al. 220 W Raman fiber laser at 1.24 μm based on phosphosilicate fiber[J/OL]. 2018-12-01]. https:∥ieeexplore.ieee.org/document/8579106.(2018).

    [26] Turitsyn S K, Babin S A. El-Taher A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 4, 231-235(2010).

    [27] Huang L, Xu J, Ye J et al. Power scaling of linearly polarized random fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0900608(2018). http://ieeexplore.ieee.org/document/7964668/

    [28] Tian C P, Wang Y Y, Shi H X et al. Mid-infrared Raman laser source based on liquid-core fiber[J]. Laser & Optoelectronics Progress, 54, 051405(2017).

    [29] Weiner A. Ultrafast optics[M]. Hoboken:Wiley(2009).

    [30] Yang X, Zhang L, Jiang H et al. Actively mode-locked Raman fiber laser[J]. Optics Express, 23, 19831-19836(2015). http://europepmc.org/abstract/med/26367642

    [31] Uznetsov A G K, Harenko D S K, Odivilov E V P et al. . Fifty-ps Raman fiber laser with hybrid active-passive mode locking[J]. Optics Express, 24, 23872-23877(2016). http://www.ncbi.nlm.nih.gov/pubmed/27464081

    [32] Chamorovskiy A, Rautiainen J, Lyytikäinen J et al. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror[J]. Optics Letters, 35, 3529-3531(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-20-3529

    [33] Castellani C E S, Kelleher E J R, Travers J C et al. . Ultrafast Raman laser mode-locked by nanotubes[J]. Optics Letters, 36, 3996-3998(2011). http://www.ncbi.nlm.nih.gov/pubmed/22002364

    [34] Castellani C E S, Kelleher E J R, Popa D et al. . CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes[J]. Laser Physics Letters, 10, 015101(2013). http://adsabs.harvard.edu/abs/2013LaPhL..10a5101C

    [35] Zhang L, Wang G, Hu J et al. Linearly polarized 1180-nm Raman fiber laser mode locked by graphene[J]. IEEE Photonics Journal, 4, 1809-1815(2012). http://ieeexplore.ieee.org/document/6308751/

    [36] Xu J, Wu S D, Liu J et al. Noise-like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese Journal of Lasers, 41, 0302006(2014).

    [37] Chamorovskiy A, Rantamäki A, Sirbu A et al. 1.38-μm mode-locked Raman fiber laser pumped by semiconductor disk laser[J]. Optics Express, 18, 23872-23877(2010). http://europepmc.org/abstract/med/21164732

    [38] Zhan L, Kuang Q, Gu Z et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 33, 391-395(2015). http://ieeexplore.ieee.org/document/6983544/

    [39] Liu J, Chen Y, Tang P et al. Duration switchable high-energy passively mode-locked Raman fiber laser based on nonlinear polarization evolution[J]. IEEE Photonics Journal, 7, 1503207(2015). http://ieeexplore.ieee.org/document/7247636/

    [40] Pan W, Zhang L, Zhou J et al. Raman dissipative soliton fiber laser pumped by an ASE source[J]. Optics Letters, 42, 5162-5165(2017).

    [41] Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 13, 56-58(1988).

    [42] Chestnut D A, Taylor J R. Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries[J]. Optics Letters, 30, 2982-2984(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000004000012000012000001&idtype=cvips&gifs=Yes

    [43] Aguergaray C, Méchin D, Kruglov V et al. Experimental realization of a mode-locked parabolic Raman fiber oscillator[J]. Optics Express, 18, 8680-8687(2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-8-8680

    [44] Stolen R H, Lin C, Jain R K. A time-dispersion-tuned fiber Raman oscillator[J]. Applied Physics Letters, 30, 340-342(1977). http://scitation.aip.org/content/aip/journal/apl/30/7/10.1063/1.89391

    [45] Lin C, French W G. A near-infrared fiber Raman oscillator tunable from 1.07 to 1.32 μm[J]. Applied Physics Letters, 34, 666-668(1979).

    [46] Nakazawa M, Kuznetsov M, Ippen E. Theory of the synchronously pumped fiber Raman laser[J]. IEEE Journal of Quantum Electronics, 22, 1953-1966(1986). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1072892

    [47] Smith K, Kean P N, Crust D W et al. An experimental study of a synchronously pumped fibre Raman oscillator[J]. Journal of Modern Optics, 34, 1227-1233(1987). http://www.tandfonline.com/doi/abs/10.1080/09500348714551111

    [48] Golovchenko E A, Dianov E M, Mamyshev P V et al. Theoretical and experimental study of synchronously pumped dispersion-compensated femtosecond fiber Raman lasers[J]. Journal of the Optical Society of America B, 7, 172-181(1990). http://www.opticsinfobase.org/abstract.cfm?uri=josab-7-2-172

    [49] Lin D, Alam S, Teh P S et al. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses[J]. Optics Letters, 36, 2050-2052(2011). http://europepmc.org/abstract/MED/21633445

    [50] Babin S A, Podivilov E V, Kharenko D S et al. Multicolour nonlinearly bound chirped dissipative solitons[J]. Nature Communications, 5, 4653(2014). http://www.nature.com/articles/ncomms5653

    [51] Churin D, Olson J, Norwood R A et al. High-power synchronously pumped femtosecond Raman fiber laser[J]. Optics Letters, 40, 2529-2532(2015). http://www.ncbi.nlm.nih.gov/pubmed/26030549

    [52] Chen H, Chen S-P, Jiang Z-F et al. All-fiberized synchronously pumped 1120 nm picosecond Raman laser with flexible output dynamics[J]. Optics Express, 23, 24088-24096(2015). http://www.ncbi.nlm.nih.gov/pubmed/26368500

    [53] Kobtsev S, Kukarin S, Kokhanovskiy A. Synchronously pumped picosecond all-fibre Raman laser based on phosphorus-doped silica fibre[J]. Optics Express, 23, 18548-18553(2015). http://www.ncbi.nlm.nih.gov/pubmed/26191913

    [54] Kharenko D S, Efremov V D, Evmenova E A et al. Generation of Raman dissipative solitons near 13 microns in a phosphosilicate-fiber cavity[J]. Optics Express, 26, 15084-15089(2018). http://8.18.37.105/abstract.cfm?uri=oe-26-12-15084

    [55] Pan W, Zhang L, Jiang H et al. Ultrafast Raman fiber laser with random distributed feedback[J]. Laser & Photonics Reviews, 12, 1700326(2018). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201700326/abstract

    [56] Horowitz M, Barad Y, Silberberg Y. Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser[J]. Optics Letters, 22, 799-801(1997). http://www.ncbi.nlm.nih.gov/pubmed/18185666

    [57] Smirnov S, Kobtsev S. Modelling of noise-like pulses generated in fibre lasers[J]. Proceedings of SPIE, 9732, 97320S(2016). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2503040

    Weiwei Pan, Jiaqi Zhou, Lei Zhang, Yan Feng. Research Advances in Ultrafast Raman Fiber Lasers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508016
    Download Citation