• Advanced Photonics Nexus
  • Vol. 4, Issue 4, 046003 (2025)
Felix Rosenthal*, Tobias Pahl, Lucie Hüser, Michael Diehl..., Tim Eckhardt, Sebastian Hagemeier and Peter Lehmann|Show fewer author(s)
Author Affiliations
  • University of Kassel, Faculty of Electrical Engineering and Computer Science, Measurement Technology Group, Kassel, Germany
  • show less
    DOI: 10.1117/1.APN.4.4.046003 Cite this Article Set citation alerts
    Felix Rosenthal, Tobias Pahl, Lucie Hüser, Michael Diehl, Tim Eckhardt, Sebastian Hagemeier, Peter Lehmann, "Modeling and resolution analysis of microcylinder-assisted microscopy in reflection and transmission modes," Adv. Photon. Nexus 4, 046003 (2025) Copy Citation Text show less
    References

    [1] W. Singer, M. Totzeck, H. Gross. Handbook of Optical Systems, Volume 2: Physical Image Formation(2006).

    [2] G. Huszka, M. A. M. Gijs. Super-resolution optical imaging: a comparison. Micro Nano Eng., 2, 7-28(2019). https://doi.org/10.1016/j.mne.2018.11.005

    [3] S. M. Mansfield, G. S. Kino. Solid immersion microscope. Appl. Phys. Lett., 57, 2615-2616(1990). https://doi.org/10.1063/1.103828

    [4] D. R. Mason, M. V. Jouravlev, K. S. Kim. Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses. Opt. Lett., 35, 2007-2009(2010). https://doi.org/10.1364/OL.35.002007

    [5] Z. B. Wang et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011). https://doi.org/10.1038/ncomms1211

    [6] L. Li et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl., 2, e104(2013). https://doi.org/10.1038/lsa.2013.60

    [7] A. Darafsheh. Optical super-resolution and periodical focusing effects by dielectric microspheres(2013).

    [8] K. W. Allen et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express, 23, 24484-24496(2015). https://doi.org/10.1364/OE.23.024484

    [9] V. N. Astratov, Z. B. Wang, B. Luk’yanchuk. Super-resolution imaging and microscopy by dielectric particle-lenses. Label-Free Super-Resolution Microscopy, 371-406(2019).

    [10] A. Darafsheh. Microsphere-assisted microscopy. J. Appl. Phys., 131, 031102(2022). https://doi.org/10.1063/5.0068263

    [11] G. Wu, M. Hong. Optical microsphere nano-imaging: progress and challenges. Engineering, 36, 102-123(2024). https://doi.org/10.1016/j.eng.2023.10.019

    [12] V. Abbasian et al. Microsphere-assisted quantitative phase microscopy: a review. Light: Adv. Manuf., 5, 133-152(2024). https://doi.org/10.37188/lam.2024.006

    [13] V. Abbasian, A. Darafsheh. Quantitative phase microscopy by a glass microsphere and plate. Proc. SPIE, 12852, 128520E(2024). https://doi.org/10.1117/12.3000264

    [14] A. Darafsheh et al. Advantages of microsphere-assisted super-resolution imaging technique over solid immersion lens and confocal microscopies. Appl. Phys. Lett., 104, 061117(2014). https://doi.org/10.1063/1.4864760

    [15] K. W. Allen et al. Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis. Ann. Phys., Lpz., 527, 513-522(2015). https://doi.org/10.1002/andp.201500194

    [16] L. Hüser et al. Microsphere-assistance in microscopic and confocal imaging, 02014(2024).

    [17] I. Kassamakov et al. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci. Rep., 7, 3683(2017). https://doi.org/10.1038/s41598-017-03830-6

    [18] P. C. Montgomery et al. High resolution surface metrology using microsphere-assisted interference microscopy. Physica Status Solidi (a), 216, 1800761(2019). https://doi.org/10.1002/pssa.201800761

    [19] L. Hüser, P. Lehmann. Microsphere-assisted interferometry with high numerical apertures for 3D topography measurements. Appl. Opt., 59, 1695-1702(2020). https://doi.org/10.1364/AO.379222

    [20] H. Yang et al. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small, 10, 1712-1718(2014). https://doi.org/10.1002/smll.201302942

    [21] A. Darafsheh et al. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett., 40, 5-8(2015). https://doi.org/10.1364/OL.40.000005

    [22] S. L. Yang et al. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy. J. Phys. Chem. C, 124, 25951-25956(2020). https://doi.org/10.1021/acs.jpcc.0c07067

    [23] R. Boudoukha et al. Near-to far-field coupling of evanescent waves by glass microspheres. Photonics, 8, 73(2021). https://doi.org/10.3390/photonics8030073

    [24] H. Yang et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett., 16, 4862-4870(2016). https://doi.org/10.1021/acs.nanolett.6b01255

    [25] Y. B. Duan, G. Barbastathis, B. L. Zhang. Classical imaging theory of a microlens with super-resolution. Opt. Lett., 38, 2988-2990(2013). https://doi.org/10.1364/OL.38.002988

    [26] S. Zhou et al. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. B, 123, 236(2017). https://doi.org/10.1007/s00340-017-6815-7

    [27] Z. Wang et al. Optical super-resonances in dielectric microsphere particles. Proc. SPIE, 12152, 1215205(2022). https://doi.org/10.1117/12.2621072

    [28] O. V. Minin, I. V. Minin. Optical phenomena in mesoscale dielectric particles. Photonics, 8, 591(2021). https://doi.org/10.3390/photonics8120591

    [29] M. Duocastella et al. Combination of scanning probe technology with photonic nanojets. Sci. Rep., 7, 3474(2017). https://doi.org/10.1038/s41598-017-03726-5

    [30] T. Pahl et al. FEM-based modeling of microsphere-enhanced interferometry. Light: Adv. Manuf., 3, 699-711(2022). https://doi.org/10.37188/lam.2022.049

    [31] A. Darafsheh, V. Abbasian. Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light Sci. Appl., 12, 22(2023). https://doi.org/10.1038/s41377-022-01056-4

    [32] A. V. Maslov, V. N. Astratov. Resolution and reciprocity in microspherical nanoscopy: point-spread function versus photonic nanojets. Phys. Rev. Appl., 11, 064004(2019). https://doi.org/10.1103/PhysRevApplied.11.064004

    [33] V. M. Sundaram, S. B. Wen. Analysis of deep sub-micron resolution in microsphere based imaging. Appl. Phys. Lett., 105, 204102(2014). https://doi.org/10.1063/1.4902247

    [34] T. H. Hoang et al. Focusing and imaging in microsphere-based microscopy. Opt. Express, 23, 12337-12353(2015). https://doi.org/10.1364/OE.23.012337

    [35] A. Maslov, B. Jin, V. Astratov. Wave optics of imaging with contact ball lenses. Sci. Rep., 13, 6688(2023). https://doi.org/10.1038/s41598-023-32826-8

    [36] A. V. Maslov, V. N. Astratov. Origin of the super-resolution of microsphere-assisted imaging. Appl. Phys. Lett., 124, 061105(2024). https://doi.org/10.1063/5.0188450

    [37] T. Pahl et al. Modeling microcylinder-assisted conventional, interference and confocal microscopy, 309, 02015(2024).

    [38] T. Pahl et al. Simulative investigation of microcylinder-assisted microscopy in reflection and transmission mode. Proc. SPIE, 12619, 126190K(2023). https://doi.org/10.1117/12.2673443

    [39] T. Pahl et al. 3D modeling of coherence scanning interferometry on 2D surfaces using FEM. Opt Express, 28, 39807-39826(2020). https://doi.org/10.1364/OE.411167

    [40] T. Pahl et al. Rigorous 3D modeling of confocal microscopy on 2D surface topographies. Meas. Sci. Technol., 32, 094010(2021). https://doi.org/10.1088/1361-6501/abfd69

    [41] T. Pahl et al. Electromagnetic modeling of interference, confocal, and focus variation microscopy. Adv. Photonics Nexus, 3, 016013(2024). https://doi.org/10.1117/1.APN.3.1.016013

    [42] A. Darafsheh et al. Super-resolution optical microscopy by using dielectric microwires. Proc. SPIE, 9713, 97130U(2016). https://doi.org/10.1117/12.2211431

    [43] J. N. Monks et al. Spider silk: mother nature’s bio-superlens. Nano Lett., 16, 5842-5845(2016). https://doi.org/10.1021/acs.nanolett.6b02641

    [44] NGSolve(2023). https://ngsolve.org/

    [45] X. Hao et al. Microsphere based microscope with optical super-resolution capability. Appl. Phys. Lett., 99, 203102(2011). https://doi.org/10.1063/1.3662010

    [46] A. Darafsheh et al. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett., 101, 141128(2012). https://doi.org/10.1063/1.4757600

    [47] P. Montgomery et al. 3D nano surface profilometry by combining the photonic nanojet with interferometry. J. Phys. Conf. Ser., 794, 012006(2017). https://doi.org/10.1088/1742-6596/794/1/012006

    [48] H. Hooshmand et al. Comparison of rigorous scattering models to accurately replicate the behaviour of scattered electromagnetic waves in optical surface metrology. J. Comput. Phys., 521, 113519(2025). https://doi.org/10.1016/j.jcp.2024.113519

    [49] M. R. Foreman, J. D. Swaim, F. Vollmer. Whispering gallery mode sensors. Adv. Opt. Photonics, 7, 168-240(2015). https://doi.org/10.1364/AOP.7.000168

    [50] F. Cheng et al. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano, 10, 9852-9860(2016). https://doi.org/10.1021/acsnano.6b05556

    [51] P. Lehmann et al. Lateral resolution enhanced interference microscopy using virtual annular apertures. J. Phys.: Photonics, 5, 015001(2023). https://doi.org/10.1088/2515-7647/acb249

    [52] Y. Ben-Aryeh. Increase of resolution by use of microspheres related to complex Snell’s law. J. Opt. Soc. Am. A, 33, 2284-2288(2016). https://doi.org/10.1364/JOSAA.33.002284

    [53] S. Yang et al. Converting evanescent waves into propagating waves: the super-resolution mechanism in microsphere-assisted microscopy. J. Phys. Chem. C, 124, 25951-25956(2020). https://doi.org/10.1021/acs.jpcc.0c07067

    Felix Rosenthal, Tobias Pahl, Lucie Hüser, Michael Diehl, Tim Eckhardt, Sebastian Hagemeier, Peter Lehmann, "Modeling and resolution analysis of microcylinder-assisted microscopy in reflection and transmission modes," Adv. Photon. Nexus 4, 046003 (2025)
    Download Citation