• Advanced Photonics Nexus
  • Vol. 4, Issue 3, 036007 (2025)
Yuanzheng Ma1,†, Davit Khutsishvili1, Zihan Zang2, Wei Yue3..., Zhen Guo4, Tao Feng1, Zitian Wang1, Liwei Lin3, Shaohua Ma1,* and Xun Guan1,*|Show fewer author(s)
Author Affiliations
  • 1Tsinghua University, Tsinghua Shenzhen International Graduate School, Shenzhen, China
  • 2University of California, Department of Bioengineering, Los Angeles, California, United States
  • 3University of California, Department of Mechanical Engineering, Berkeley, California, United States
  • 4Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States
  • show less
    DOI: 10.1117/1.APN.4.3.036007 Cite this Article Set citation alerts
    Yuanzheng Ma, Davit Khutsishvili, Zihan Zang, Wei Yue, Zhen Guo, Tao Feng, Zitian Wang, Liwei Lin, Shaohua Ma, Xun Guan, "PLayer: a plug-and-play embedded neural system to boost neural organoid 3D reconstruction," Adv. Photon. Nexus 4, 036007 (2025) Copy Citation Text show less
    References

    [1] J. W. Lichtman, H. Pfister, N. Shavit. The big data challenges of connectomics. Nat. Neurosci., 17, 1448-1454(2014). https://doi.org/10.1038/nn.3837

    [2] A. Fornito, A. Zalesky, M. Breakspear. The connectomics of brain disorders. Nat. Rev. Neurosci., 16, 159-172(2015). https://doi.org/10.1038/nrn3901

    [3] M. Schrter, O. Paulsen, E. T. Bullmore. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci., 18, 131-146(2017). https://doi.org/10.1038/nrn.2016.182

    [4] M. W. Reimann et al. A null model of the mouse whole-neocortex micro-connectome. Nat. Commun., 10, 3903(2019). https://doi.org/10.1038/s41467-019-11630-x

    [5] M. Schmidt et al. RoboEM: automated 3D flight tracing for synaptic-resolution connectomics. Nat. Methods, 21, 908-913(2024). https://doi.org/10.1038/s41592-024-02226-5

    [6] M. Axer, K. Amunts. Scale matters: the nested human connectome. Science, 378, 500-504(2022). https://doi.org/10.1126/science.abq2599

    [7] N. Fleming. The microscopic advances that are opening big opportunities in cell biology. Nature, 575, S91(2019). https://doi.org/10.1038/d41586-019-03650-w

    [8] J. C. B. Chiang et al. In-vivo corneal confocal microscopy: imaging analysis, biological insights and future directions. Commun. Biol., 6, 652(2023). https://doi.org/10.1038/s42003-023-05005-8

    [9] M. Storti et al. Tailoring confocal microscopy for real-time analysis of photosynthesis at single-cell resolution. Cell Rep. Methods, 3, 100568(2023). https://doi.org/10.1016/j.crmeth.2023.100568

    [10] S. E. Mountcastle et al. Biofilm viability checker: an open-source tool for automated biofilm viability analysis from confocal microscopy images. NPJ Biofilms Microbiomes, 7, 44(2021). https://doi.org/10.1038/s41522-021-00214-7

    [11] P. Edwards et al. TDAExplore: quantitative analysis of fluorescence microscopy images through topology-based machine learning. Patterns, 2, 100367(2021). https://doi.org/10.1016/j.patter.2021.100367

    [12] J. Heering, A. Alvarado, S. Ringgaard. Induction of cellular differentiation and single cell imaging of vibrio parahaemolyticus swimmer and swarmer cells. J. Vis. Exp., e55842(2017). https://doi.org/10.3791/55842

    [13] C. Bremond Martin et al. Recent trends and perspectives in cerebral organoids imaging and analysis. Front. Neurosci., 15, 629067(2021). https://doi.org/10.3389/fnins.2021.629067

    [14] E. Driehuis, K. Kretzschmar, H. Clevers. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc., 15, 3380-3409(2020). https://doi.org/10.1038/s41596-020-0379-4

    [15] M. T. Islam, L. Xing. Leveraging cell-cell similarity for high-performance spatial and temporal cellular mappings from gene expression data. Patterns, 4, 100840(2023). https://doi.org/10.1016/j.patter.2023.100840

    [16] H. Clevers. Modeling development and disease with organoids. Cell, 165, 1586-1597(2016). https://doi.org/10.1016/j.cell.2016.05.082

    [17] Z. Wang et al. CNS organoid surpasses cell-laden microgel assembly to promote spinal cord injury repair. Research, 2022, 9832128(2022). https://doi.org/10.34133/2022/9832128

    [18] A. Dart. Organoid diversity. Nat. Rev. Cancer, 18, 404-405(2018). https://doi.org/10.1038/s41568-018-0018-3

    [19] E. Bayir, A. Sendemir, Y. F. Missirlis. Mechanobiology of cells and cell systems, such as organoids. Biophys. Rev., 11, 721-728(2019). https://doi.org/10.1007/s12551-019-00590-7

    [20] X. Tang et al. Volumetric compression by heterogeneous scaffold embedding promotes cerebral organoid maturation and does not impede growth. Cell Syst., 14, 872-882.e873(2023). https://doi.org/10.1016/j.cels.2023.09.004

    [21] B. J. Hartley, K. J. Brennand. Neural organoids for disease phenotyping, drug screening and developmental biology studies. Neurochem. Int., 106, 85-93(2017). https://doi.org/10.1016/j.neuint.2016.10.004

    [22] Z. Zhao et al. Organoids. Nat. Rev. Methods Prim., 2, 94(2022). https://doi.org/10.1038/s43586-022-00174-y

    [23] T. Takebe, J. M. Wells. Organoids by design. Science, 364, 956-959(2019). https://doi.org/10.1126/science.aaw7567

    [24] R. M. Marton, S. P. Pasca. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol., 30, 133-143(2020). https://doi.org/10.1016/j.tcb.2019.11.004

    [25] J. Pawley. Handbook of Biological Confocal Microscopy(2006).

    [26] S. M. Hickey et al. Fluorescence microscopy—an outline of hardware, biological handling, and fluorophore considerations. Cells, 11, 35(2021). https://doi.org/10.3390/cells11010035

    [27] M. G. Andrews, A. R. Kriegstein. Challenges of organoid research. Annu. Rev. Neurosci., 45, 23-39(2022). https://doi.org/10.1146/annurev-neuro-111020-090812

    [28] J. Chen et al. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. Nat. Methods, 18, 678-687(2021). https://doi.org/10.1038/s41592-021-01155-x

    [29] D. Davaasuren et al. Automated 3D segmentation of guard cells enables volumetric analysis of stomatal biomechanics. Patterns, 3, 100627(2022). https://doi.org/10.1016/j.patter.2022.100627

    [30] A. Boquet-Pujadas, J.-C. Olivo-Marin, N. Guilln. Bioimage analysis and cell motility. Patterns, 2, 100170(2021). https://doi.org/10.1016/j.patter.2020.100170

    [31] M. Weigert et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods, 15, 1090-1097(2018). https://doi.org/10.1038/s41592-018-0216-7

    [32] R. F. Laine, G. Jacquemet, A. Krull. Imaging in focus: an introduction to denoising bioimages in the era of deep learning. Int. J. Biochem. Cell Biol., 140, 106077(2021). https://doi.org/10.1016/j.biocel.2021.106077

    [33] Y. Wu, Y. Rivenson, H. Wang et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nat. Methods, 16, 1323-1331(2019). https://doi.org/10.1038/s41592-019-0622-5

    [34] L. Bowen et al. Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning. Biomed. Opt. Express, 13, 284-299(2022). https://doi.org/10.1364/BOE.444488

    [35] H. Park et al. Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy. Nat. Commun., 13, 3297(2022). https://doi.org/10.1038/s41467-022-30949-6

    [36] A. R. Abramczyk, Y. Sung. Deep-learning-assisted snapshot optical tomography for microscopic volume prediction: a simulation study. Opt. Lett., 49, 302-305(2024). https://doi.org/10.1364/OL.511350

    [37] B. Liu et al. Deep learning-based 3D single-cell imaging analysis pipeline enables quantification of cell-cell interaction dynamics in the tumor microenvironment. Cancer Res., 84, 517-526(2023). https://doi.org/10.1158/0008-5472.CAN-23-1100

    [38] M. J. Willemink et al. Preparing medical imaging data for machine learning. Radiology, 295, 4-15(2020). https://doi.org/10.1148/radiol.2020192224

    [39] J. Ma et al. Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nat. Cancer, 2, 233-244(2021). https://doi.org/10.1038/s43018-020-00169-2

    [40] A. D. Elliott. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom., 92, e68(2020). https://doi.org/10.1002/cpcy.68

    [41] L. Schermelleh, R. Heintzmann, H. Leonhardt. A guide to super-resolution fluorescence microscopy. J. Cell Biol., 190, 165-175(2010). https://doi.org/10.1083/jcb.201002018

    [42] X. Li et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat. Biotechnol., 41, 282-292(2023). https://doi.org/10.1038/s41587-022-01450-8

    [43] Y. Zhang et al. A Poisson–Gaussian denoising dataset with real fluorescence microscopy images, 11710-11718(2019). https://doi.org/10.1109/CVPR.2019.01198

    [44] D. Eschweiler et al. 3D fluorescence microscopy data synthesis for segmentation and benchmarking. PLoS One, 16, e0260509(2021). https://doi.org/10.1371/journal.pone.0260509

    [45] Y. Wang et al. A fully progressive approach to single-image super-resolution, 864-873(2018). https://doi.org/10.1109/CVPRW.2018.00131

    [46] K. He et al. Masked autoencoders are scalable vision learners, 16000-16009(2022).

    [47] W. Schroeder, K. M. Martin, W. E. Lorensen. The Visualization Toolkit an Object-Oriented Approach to 3D Graphics(1998).

    [48] P. Ramachandran, G. Varoquaux. Mayavi: 3D visualization of scientific data. Comput. Sci. Eng., 13, 40-51(2011). https://doi.org/10.1109/MCSE.2011.35

    [49] Z. Li et al. Train big, then compress: rethinking model size for efficient training and inference of transformers, 5958-5968(2020).

    [50] P. Shamsolmoali et al. G-GANISR: gradual generative adversarial network for image super resolution. Neurocomputing, 366, 140-153(2019). https://doi.org/10.1016/j.neucom.2019.07.094

    [51] A. Yuan, M. V. Rao, R. A. Nixon. Neurofilaments at a glance. J. Cell Sci., 125, 3257-3263(2012). https://doi.org/10.1242/jcs.104729

    [52] Y. Ma et al. Exploring the neural organoid in high definition: physics-inspired high-throughout super-resolution 3D image reconstruction, 1-5(2023). https://doi.org/10.1109/ACP/POEM59049.2023.10368794

    [53] Y. Ma et al. Iterative-in-iterative super-resolution biomedical imaging using one real image. Proc. SPIE, 12753(2023). https://doi.org/10.1117/12.2691281

    [54] S. Vadera, S. Ameen. Methods for pruning deep neural networks. IEEE Access, 10, 63280-63300(2022). https://doi.org/10.1109/ACCESS.2022.3182659

    [55] D. Blalock et al. What is the state of neural network pruning?, 129-146(2020).

    [56] M. A. Lancaster, J. A. Knoblich. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc., 9, 2329-2340(2014). https://doi.org/10.1038/nprot.2014.158

    [57] F. Birey et al. Assembly of functionally integrated human forebrain spheroids. Nature, 545, 54-59(2017). https://doi.org/10.1038/nature22330

    [58] K. F. Sullivan, D. W. Cleveland. Identification of conserved isotype-defining variable region sequences for four vertebrate beta tubulin polypeptide classes. Proc. Natl. Acad. Sci. U. S. A., 83, 4327-4331(1986). https://doi.org/10.1073/pnas.83.12.4327

    [59] J. R. Menezes, M. B. Luskin. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J. Neurosci., 14, 5399-5416(1994). https://doi.org/10.1523/JNEUROSCI.14-09-05399.1994

    [60] S. Dodge, L. Karam. Understanding how image quality affects deep neural networks, 1-6(2016). https://doi.org/10.1109/QoMEX.2016.7498955

    [61] M. Rajnoha, R. Burget, L. Povoda. Image background noise impact on convolutional neural network training, 1-4(2018). https://doi.org/10.1109/ICUMT.2018.8631242

    [62] M. Mendoza, S. Velastn. Progress in pattern recognition, image analysis, computer vision, and applications(2018).

    [63] J. I. Z. Chen, A. Ilham et al. Impact of class imbalance on convolutional neural network training in multi-class problems. Image Processing and Capsule Networks, 309-318(2021).

    [64] M. Monici. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev., 11, 227-256(2005). https://doi.org/10.1016/S1387-2656(05)11007-2

    [65] G. De Luca et al. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity. Methods Appl. Fluoresc., 5, 015002(2017). https://doi.org/10.1088/2050-6120/5/1/015002

    [66] W. Gong et al. Redefining the photo-stability of common fluorophores with triplet state quenchers: mechanistic insights and recent updates. Chem. Commun., 55, 8695-8704(2019). https://doi.org/10.1039/C9CC02616A

    [67] M. Minoshima, K. Kikuchi. Photostable and photoswitching fluorescent dyes for super-resolution imaging. J. Biolg Inorg. Chem., 22, 639-652(2017). https://doi.org/10.1007/s00775-016-1435-y

    [68] L. Wang et al. A photostable cationic fluorophore for long-term bioimaging. J. Mater. Chem. B, 5, 9183-9188(2017). https://doi.org/10.1039/C7TB02668D

    [69] A. E. Kalyuzhny, S. L. White, A. T. Lam, H. D. Buck. 3D imaging for cleared tissues and thicker samples on confocal and light-sheet microscopes. Signal Transduction Immunohistochemistry: Methods and Protocols, 143-161(2022).

    [70] F. Khader et al. Denoising diffusion probabilistic models for 3D medical image generation. Sci. Rep., 13, 7303(2023). https://doi.org/10.1038/s41598-023-34341-2

    [71] H. Elwarfalli, R. C. Hardie. FifNet: a convolutional neural network for motion-based multiframe super-resolution using fusion of interpolated frames. Comput. Vision Image Underst., 202, 103097(2021). https://doi.org/10.1016/j.cviu.2020.103097

    [72] Y. Bahri et al. Explaining neural scaling laws. Proc. Natl. Acad. Sci., 121, e2311878121(2024). https://doi.org/10.1073/pnas.2311878121

    [73] Y. Ma et al. DOVE: doodled vessel enhancement for photoacoustic angiography super resolution. Med. Image Anal., 94, 103106(2024). https://doi.org/10.1016/j.media.2024.103106

    [74] Y. Ma. PLayer: a plug-and-play embedded neural system to boost neural organoid 3D reconstruction. https://doi.org/10.5281/zenodo.12786894

    [75] A. Kaur, G. Dong. A complete review on image denoising techniques for medical images. Neural Process. Lett., 55, 7807-7850(2023). https://doi.org/10.1007/s11063-023-11286-1

    [76] X. Zhang. Two-step non-local means method for image denoising. Multidimension. Syst. Signal Process., 33, 341-366(2022). https://doi.org/10.1007/s11045-021-00802-y

    [77] J. Chen et al. Transunet: Rethinking the u-net architecture design for medical image segmentation through the lens of transformers. Med. Image Anal., 97, 103280(2024). https://doi.org/10.1016/j.media.2024.103280

    [78] Y. Cai et al. Retinexformer: One-stage retinex-based transformer for low-light image enhancement, 12504-12513(2023).

    [79] J. Pan et al. Multi-domain integrative swin transformer network for sparse-view tomographic reconstruction. Patterns, 3, 100498(2022). https://doi.org/10.1016/j.patter.2022.100498

    [80] G. Perry, E. T. Rolls, S. M. Stringer. Spatial vs temporal continuity in view invariant visual object recognition learning. Vision Res., 46, 3994-4006(2006). https://doi.org/10.1016/j.visres.2006.07.025

    [81] A. Adolfsson, M. Ackerman, N. C. Brownstein. To cluster, or not to cluster: An analysis of clusterability methods. Pattern Recognit., 88, 13-26(2019). https://doi.org/10.1016/j.patcog.2018.10.026

    [82] W. Jia et al. Feature dimensionality reduction: a review. Complex Intell. Syst., 8, 2663-2693(2022). https://doi.org/10.1007/s40747-021-00637-x

    [83] J. Zhang, J. Yu, D. Tao. Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans. Image Process., 27, 2420-2432(2018). https://doi.org/10.1109/TIP.2018.2804218

    [84] K. Bunte, M. Biehl, B. Hammer. A general framework for dimensionality-reducing data visualization mapping. Neural Comput., 24, 771-804(2012). https://doi.org/10.1162/NECO_a_00250

    [85] S. Vadera, S. Ameen. Methods for pruning deep neural networks. IEEE Access, 10, 63280-63300(2022).

    [86] A. Paszke. Pytorch: An imperative style, high performance deep learning library(2019).

    [87] H. Cao et al. Swin unet: Unet like pure transformer for medical image segmentation, 205-218(2022).

    Yuanzheng Ma, Davit Khutsishvili, Zihan Zang, Wei Yue, Zhen Guo, Tao Feng, Zitian Wang, Liwei Lin, Shaohua Ma, Xun Guan, "PLayer: a plug-and-play embedded neural system to boost neural organoid 3D reconstruction," Adv. Photon. Nexus 4, 036007 (2025)
    Download Citation