• Matter and Radiation at Extremes
  • Vol. 5, Issue 2, 24401 (2020)
C. Martínez-Flores1 and R. Cabrera-Trujillo2、*
Author Affiliations
  • 1Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 México D.F., Mexico
  • 2Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Ap. Postal 43-8, Cuernavaca, Morelos, 62251, Mexico
  • show less
    DOI: 10.1063/1.5139099 Cite this Article
    C. Martínez-Flores, R. Cabrera-Trujillo. High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement[J]. Matter and Radiation at Extremes, 2020, 5(2): 24401 Copy Citation Text show less
    References

    [1] A. Bijl, J. De Boer, A. Michels. Remarks concerning molecural interaction and their influence on the polarisability. Physica, 4, 981-994(1937).

    [2] S. A. Cruz, J. Sabin, E. Brandas. Advances in Quantum Chemistry(2009).

    [3] S. A. Cruz, J. Sabin, E. Brandas. Advances in Quantum Chemistry(2009).

    [4] K. D. Sen. Electronic Structure of Quantum Confined Atoms and Molecules(2014).

    [5] W. Jaskólski. Confined many-electron systems. Phys. Rep., 271, 1-66(1996).

    [6] E. Ley-Koo. Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings. Rev. Mex. Fis., 64, 326-363(2018).

    [7] G. McGinn. Atomic and molecular calculations with the pseudopotential method. VII One-valence-electron photoionization cross sections. J. Chem. Phys., 53, 3635-3640(1970).

    [8] J. N. Bardsley. Pseudopotential calculations of alkali interactions. Chem. Phys. Lett., 7, 517-520(1970).

    [9] P. G. Burke, W. D. Robb. The r-matrix theory of atomic processes. Adv. At. Mol. Phys., 11, 143-214(1976).

    [10] M. J. Seaton, H. E. Saraph, G. Peach. Atomic data for opacity calculations. IX. The lithium isoelectronic sequence. J. Phys. B: At., Mol. Opt. Phys., 21, 3669(1988).

    [11] P. Schwerdtfeger. The pseudopotential approximation in electronic structure theory. ChemPhysChem, 12, 3143-3155(2011).

    [12] C. Y. Lin, Y. K. Ho. Photoionization of atoms encapsulated by cages using the power-exponential potential. J. Phys. B: At., Mol. Opt. Phys., 45, 145001(2012).

    [13] E. Buendía, A. Sarsa, F. J. Gálvez. Study of confined many electron atoms by means of the POEP method. J. Phys. B: At., Mol. Opt. Phys., 47, 185002(2014).

    [14] J. W. Cooper. Photoionization from outer atomic subshells. A model study. Phys. Rev., 128, 681-693(1962).

    [15] E. V. Ludeña. SCF Hartree-Fock calculations of ground state wavefunctions of compressed atoms. J. Chem. Phys., 69, 1770-1775(1978).

    [16] J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev., 81, 385-390(1951).

    [17] A. Zangwill. A half century of density functional theory. Phys. Today, 68, 34-39(2015).

    [18] A. Szabo, N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory(1996).

    [19] M. S. Pindzola. Excitation and charge transfer in proton-lithium collisions at 5–15 kev. Phys. Rev. A, 60, 3764-3768(1999).

    [20] M. Higuchi, M. Miyasita, K. Higuchi. An alternative scheme for calculating the unrestricted Hartree–Fock equation: Application to the boron and neon atoms. Physica B, 407, 2758-2762(2012).

    [21] S. A. Cruz, R. Cabrera-Trujillo. Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A, 87, 012502(2013).

    [22] S. Koonin, D. C. Meredith. Computational Physics: Fortran Version(1998).

    [23] M. Inokuti. Inelastic collisions of fast charged particles with atoms and molecules—The Bethe theory revisited. Rev. Mod. Phys., 43, 297-347(1971).

    [24] H. Friedrich. Theoretical Atomic Physics(2006).

    [25] R. Jackiw, H. A. Bethe. Intermediate Quantum Mechanics(1997).

    [26] H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys., 397, 325-400(1930).

    [27] J. Oddershede, J. R. Sabin. Orbital and whole-atom proton stopping power and shell corrections for atoms with z < 36. At. Data Nucl. Data Tables, 31, 275-297(1984).

    [28] C. Froese-Fischer. A general multi-configuration Hartree-Fock program. Comput. Phys. Commun., 14, 145-153(1978).

    [29] R. Betancourt-Riera, L. Ferrer-Galindo, L. A. Ferrer-Moreno, R. Riera, A. D. Sañu-Ginarte, E. M. Guillén-Romero. New approach to obtain the analytical expression of the energy functional in free or confined atoms. Results Phys., 13, 102261(2019).

    [30] A. W. Weiss. The calculation of atomic oscillator strengths: The lithium atom revisited. Can. J. Chem., 70, 456-463(1992).

    [31] J. K. Nagle, P. Schwerdtfeger. 2018 Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys., 117, 1200-1225(2019).

    [32] Z.-C. Yan, J. Mitroy, T.-Y. Shi, L.-Y. Tang. Dynamic dipole polarizabilities of the Li atom and the Be+ ion. Phys. Rev. A, 81, 042521(2010).

    [33] A. W. Weiss. Wave functions and oscillator strengths for the lithium isoelectronic sequence. Astrophys. J., 138, 1262(1963).

    [34] P. A. Lakshmi, V. K. Dolmatov, J. P. Connerade. The filling of shells in compressed atoms. J. Phys. B: At., Mol. Opt. Phys., 33, 251(2000).

    [35] J. P. Connerade, R. Semaoune. Atomic compressibility and reversible insertion of atoms into solids. J. Phys. B: At., Mol. Opt. Phys., 33, 3467-3484(2000).

    [36] R. Cammi, R. Hoffmann, M. Rahm, N. W. Ashcroft. Squeezing all elements in the periodic table: Electron configuration and electronegativity of the atoms under compression. J. Am. Chem. Soc., 141, 10253-10271(2019).

    [37] A. Banerjee, C. Le Sech. A variational approach to the dirichlet boundary condition: Application to confined H, He and Li. J. Phys. B: At., Mol. Opt. Phys., 44, 105003(2011).

    [38] A. Sarsa, C. Le Sech. Variational Monte Carlo method with Dirichlet boundary conditions: Application to the study of confined systems by impenetrable surfaces with different symmetries. J. Chem. Theory Comput., 7, 2786-2794(2011).

    [39] P. Anantha Lakshmi, J. P. Connerade, P. Kengkan, R. Semaoune. Scaling laws for atomic compressibility. J. Phys. B: At., Mol. Opt. Phys., 33, L847-L854(2000).

    [40] N. A. Atari. Piezoluminescence phenomenon. Phys. Lett. A, 90, 93-96(1982).

    [41] H. Tsuchida, H. Ogawa, S. Kamakura, M. Inokuti, N. Sakamoto. Mean excitation energies for the stopping power of atoms and molecules evaluated from oscillator-strength spectra. J. Appl. Phys., 100, 064905(2006).

    [42] M. Inokuti, R. P. Saxon, J. L. Dehmer. Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row. Phys. Rev. A, 12, 102-121(1975).

    [43] M. Inokuti, E. Shiles, D. Y. Smith, W. Karstens. Mean excitation energy for the stopping power of light elements. Nucl. Instrum. Methods Phys. Res., Sect. B, 250, 1-5(2006).

    C. Martínez-Flores, R. Cabrera-Trujillo. High pressure effects on the excitation spectra and dipole properties of Li, Be+, and B2+ atoms under confinement[J]. Matter and Radiation at Extremes, 2020, 5(2): 24401
    Download Citation