• Nano-Micro Letters
  • Vol. 15, Issue 1, 202 (2023)
Changlong Sun1, Xin Xu1, Cenlin Gui1, Fuzhou Chen1..., Yian Wang2, Shengzhou Chen1, Minhua Shao2,* and Jiahai Wang1,**|Show fewer author(s)
Author Affiliations
  • 1School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
  • 2Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01175-6 Cite this Article
    Changlong Sun, Xin Xu, Cenlin Gui, Fuzhou Chen, Yian Wang, Shengzhou Chen, Minhua Shao, Jiahai Wang. High-Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium-Ion Storage[J]. Nano-Micro Letters, 2023, 15(1): 202 Copy Citation Text show less
    References

    [1] M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022).

    [2] Y. Zhou, D. Yan, H. Xu, J. Feng, X. Jiang et al., Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12, 528–537 (2015).

    [3] J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022).

    [4] Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022).

    [5] J. Lu, Y. Zhang, X. Gong, L. Li, S. Pang et al., High-yield synthesis of ultrathin silicon nanosheets by physical grinding enables robust lithium-ion storage. Chem. Eng. J. 446, 137022 (2022).

    [6] T.K. Bijoy, J. Karthikeyan, P. Murugan, Exploring the mechanism of spontaneous and lithium-assisted graphitic phase formation in SiC nanocrystallites of a high capacity li-ion battery anode. J. Phys. Chem. C 121, 15106 (2017).

    [7] C. Sun, Y.-J. Wang, H. Gu, H. Fan, G. Yang et al., Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 77, 105092 (2020).

    [8] Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: carbon dots evoked high initial coulombic efciency. Nano-Micro Lett. 14, 136 (2022).

    [9] S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14, 11548 (2020).

    [10] D.T. Ngo, H.T.T. Le, X.-M. Pham, C.-N. Park, C.-J. Park, Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 32790 (2017).

    [11] X. Wang, K.M. Liew, Density functional study of interaction of lithium with pristine and stone-wales-defective single-walled silicon carbide nanotubes. J. Phys. Chem. C 116, 26888 (2012).

    [12] Y. Yang, J.-G. Ren, X. Wang, Y.-S. Chui, Q.-H. Wu et al., Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 5, 8689 (2013).

    [13] K. Lin, X. Xu, X. Qin, M. Liu, L. Zhao et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode. Nano-Micro Lett. 14, 149 (2022).

    [14] X.D. Huang, F. Zhang, X.F. Gan, Q.A. Huang, J.Z. Yang et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode. RSC Adv. 8, 5189 (2018).

    [15] W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithiumion batteries. Nano-Micro Lett. 15, 107 (2023).

    [16] T. Sri Devi Kumari, D. Jeyakumar, T. Prem Kumar, Nano silicon carbide: a new lithium-insertion anode material on the horizon. RSC Adv. 3, 15028 (2013)

    [17] H. Li, H. Yu, X. Zhang, G. Guo, J. Hu et al., Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 28, 1179 (2016).

    [18] A.L. Lipson, S. Chattopadhyay, H.J. Karmel, T.T. Fister, J.D. Emery et al., Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J. Phys. Chem. C 116, 20949 (2012).

    [19] C. Sun, Y.-J. Wang, D. Liu, B. Fang, W. Yan et al., Tailoring interfacial interaction in GaN@NG heterojunction via electron/ion bridges for enhanced lithium-ion storage performance. Chem. Eng. J. 453, 139603 (2023).

    [20] Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vila, S.M. Eichfeld et al., Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166 (2016).

    [21] K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192 (2012).

    [22] C. Sun, F. Chen, X. Tang, D.D. Zhang, K. Zheng et al., Simultaneous interfacial interaction and built-in electric field regulation of GaZnON@NG for high-performance lithium-ion storage. Nano Energy 99, 107369 (2022).

    [23] S. Wang, X. Yuan, X. Bi, X. Wang, Q. Huang, Observation of the retarded transportation of a photogenerated hole on epitaxial graphene. Phys. Chem. Chem. Phys. 17, 23711 (2015).

    [24] J. Röhrl, M. Hundhausen, K.V. Emtsev, T. Seyller, R. Graupner et al., Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 92, 201918 (2008).

    [25] C. Hu, H. Liu, Y. Liu, J.-F. Chen, Y. Li et al., Graphdiyne with tunable activity towards hydrogen evolution reaction. Nano Energy 63, 103874 (2019).

    [26] C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Stable and reversible lithium storage with high pseudocapacitance in GaN nanowires. ACS Appl. Mater. Interfaces 10, 2574 (2018).

    [27] J. Yang, X. Zeng, L. Chen, W. Yuan, Photocatalytic water splitting to hydrogen production of reduced graphene oxide/SiC under visible light. Appl. Phys. Lett. 102, 083101 (2013).

    [28] C. Sun, X. Tang, Z. Yin, D. Liu, Y. Wang et al., Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage. Nano Energy 68, 104376 (2020).

    [29] Y. Wen, T.E. Rufford, X. Chen, N. Li, M. Lyu et al., Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38, 368 (2017).

    [30] L. Sun, B. Wang, Y. Wang, A novel silicon carbide nanosheet for high-performance humidity sensor. Adv. Mater. Interfaces 5, 1701300 (2018).

    [31] H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu et al., N-doped graphdiyne for high-performance electrochemical electrodes. Nano Energy 44, 144 (2018).

    [32] K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg et al., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203 (2009).

    [33] L. Zhao, R. He, K.T. Rim, T. Schiros, K.S. Kim et al., Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999 (2011).

    [34] T. Luo, X. Chen, P. Wang, C. Li, B. Cao et al., Laser Irradiation-Induced SiC@graphene sub-microspheres: a bioinspired core-shell structure for enhanced tribology properties. Adv. Mater. Interfaces 5, 1700839 (2018).

    [35] L. Liu, Y.M. Yiu, T.K. Sham, L. Zhang, Y. Zhang, Electronic structures and optical properties of 6H- and 3C-SiC microstructures and nanostructures from X-ray absorption fine structures, X-ray excited optical luminescence, and theoretical studies. J. Phys. Chem. C 114, 6966 (2010).

    [36] Y. Baba, T. Sekiguchi, I. Shimoyama, K.G. Nath, Structures of sub-monolayered silicon carbide films. Appl. Surf. Sci. 237, 176 (2004).

    [37] V.Y. Aristov, G. Urbanik, K. Kummer, D.V. Vyalikh, O.V. Molodtsova et al., Graphene synthesis on cubic sic/si wafers. perspectives for mass production of graphene-based electronic devices. Nano Lett. 10, 992 (2010).

    [38] Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, T.E. Dann et al., X-ray absorption of Si–C–N thin films: A comparison between crystalline and amorphous phases. J. Appl. Phys. 86, 5609 (1999).

    [39] Y. Fang, Y. Xue, Y. Li, H. Yu, L. Hui et al., Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. 59, 13021 (2020).

    [40] C. Sun, F. Ma, L. Cai, A. Wang, Y. Wu et al., Metal-free ternary BCN nanosheets with synergetic effect of band gap engineering and magnetic properties. Sci. Rep. 7, 6617 (2017).

    [41] C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu et al., Graphene-oxide-assisted synthesis of GaN nanosheets as a new anode material for lithium-ion battery. ACS Appl. Mater. Interfaces 9, 26631 (2017).

    [42] F. Chen, C. Sun, S. Robertson, S. Chen, Y. Zhu et al., Unlocking robust lithium storage performance in high 1T-phase purity MoS2 constructed by Mg intercalation. Nano Energy 104, 107894 (2022).

    [43] Z. Li, K. Gao, Y. Han, S. Ding, Y. Cui et al., Atomic insights of electronic states engineering of GaN nanowires by Cu cation substitution for highly efficient lithium ion battery. J. Energy Chem. 67, 46 (2022).

    [44] M. Yang, C. Sun, T. Wang, F. Chen, M. Sun et al., Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries. ACS Appl. Energy Mater. 1, 4708 (2018).

    [45] B. Li, R. Qi, J. Zai, F. Du, C. Xue et al., Silica wastes to high-performance lithium storage materials: a rational designed Al2O3 coating assisted magnesiothermic process. Small 12, 5281 (2016).

    [46] C. Wang, Y. Li, K. Ostrikov, Y. Yang, W. Zhang, Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J. Alloys Compd. 646, 966 (2015).

    [47] J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy 18, 133 (2015).

    [48] T. Yoon, T. Bok, C. Kim, Y. Na, S. Park et al., Mesoporous silicon hollow nanocubes derived from metal–organic framework template for advanced lithium-ion battery anode. ACS Nano 11, 4808 (2017).

    [49] Q. Peng, Y. Lie, Z. Tang, C. Sun, J. Li et al., Electron density modulation of GaN nanowires by manganese incorporation for highly high-rate Lithium-ion storage. Electrochim. Acta 350, 136380 (2020).

    [50] K. Xie, J. Wang, S. Yu, P. Wang, C. Sun, Tunable electronic properties of free-standing Fe-doped GaN nanowires as high-capacity anode of lithium-ion batteries. Arab. J. Chem. 14, 103161 (2021).

    [51] S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao et al., Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34, 15 (2017).

    [52] H. He, Q. Gan, H. Wang, G.-L. Xu, X. Zhang et al., Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 44, 217 (2018).

    [53] Y. Han, C. Sun, K. Gao, S. Ding, Z. Miao et al., Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage. Electrochim. Acta 408, 139931 (2022).

    [54] G. Ali, J.-H. Lee, S.H. Oh, H.-G. Jung, K.Y. Chung, Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries. Nano Energy 42, 106 (2017).

    [55] K. Gao, Z. Miao, Y. Han, D. Li, W. Sun et al., One-step method synthesis of cobalt-doped GeZn1.7ON1.8 particle for enhanced lithium-ion storage performance. Electrochim. Acta 442, 141876 (2023).

    [56] F. Ma, S. Guan, D. Liu, Z. Liu, Y. Qiu, C. Sun, Y.J. Wang, Ge-doped quaternary metallic oxynitrides GaZnON: The high-performance anode material for lithium-ion batteries. J. Alloys Compd. 940, 168777 (2023).

    [57] S. Wang, C. Sun, Y. Shao, Y. Wu, L. Zhang et al., Self-supporting GaN nanowires/graphite paper: novel high-performance flexible supercapacitor electrodes. Small 13, 1603330 (2017).

    [58] T. Wang, C. Sun, M. Yang, G. Zhao, S. Wang et al., Phase-transformation engineering in MoS2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. J. Alloys Compd. 716, 112 (2017).

    [59] Z. Li, S. Ding, J. Yin, M. Zhang, C. Sun et al., Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism. J. Power Sources 451, 227815 (2020).

    [60] T. Wang, C. Sun, M. Yang, L. Zhang, Y. Shao et al., Enhanced reversible lithium ion storage in stable 1T@2H WS2 nanosheet arrays anchored on carbon fiber. Electrochim. Acta 259, 1 (2018).

    Changlong Sun, Xin Xu, Cenlin Gui, Fuzhou Chen, Yian Wang, Shengzhou Chen, Minhua Shao, Jiahai Wang. High-Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium-Ion Storage[J]. Nano-Micro Letters, 2023, 15(1): 202
    Download Citation