• Chinese Journal of Lasers
  • Vol. 51, Issue 23, 2313001 (2024)
Han Dai, Bing Han*, Jing Zhang, Yanshuo Liu, and Renjie Wang
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu , China
  • show less
    DOI: 10.3788/CJL240545 Cite this Article Set citation alerts
    Han Dai, Bing Han, Jing Zhang, Yanshuo Liu, Renjie Wang. Mechanism of Nanosecond and Picosecond Laser-Induced Periodic Structures Assisted by Prefabricated Structures on Single-Crystal Germanium Surfaces[J]. Chinese Journal of Lasers, 2024, 51(23): 2313001 Copy Citation Text show less
    References

    [1] Bonse J, Höhm S, Kirner S V et al. Laser-induced periodic surface structures: a scientific evergreen[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 9000615(2017).

    [2] Bonse J, Gräf S. Maxwell meets Marangoni: a review of theories on laser-induced periodic surface structures[J]. Laser & Photonics Reviews, 14, 2000215(2020).

    [3] Feng C P, Cheng K, Cao K Q et al. Laser induced periodic nanostructure pattern and coloring on free-form surface[J]. Laser & Optoelectronics Progress, 57, 111423(2020).

    [4] Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking[J]. Optics Express, 18, 2913-2924(2010).

    [5] Zhou K, Feng D H, Li X et al. Periodic nanoripples and photoluminescence on ZnO: Al film induced by femtosecond laser pulses[J]. Acta Optica Sinica, 31, 0816002(2011).

    [6] Lu L S, Yao W, Xie Y X et al. Study on the wettability of biomimetic stainless-steel surfaces inspired by Bauhinia Linn. leaf[J]. Surface and Coatings Technology, 405, 126721(2021).

    [7] Florian C, Skoulas E, Puerto D et al. Controlling the wettability of steel surfaces processed with femtosecond laser pulses[J]. ACS Applied Materials & Interfaces, 10, 36564-36571(2018).

    [8] Heitz J, Plamadeala C, Muck M et al. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion[J]. Applied Physics A, 123, 734(2017).

    [9] Alves-Lopes I, Almeida A, Oliveira V et al. Influence of laser surface nanotexturing on the friction behaviour of the silicon/sapphire system[J]. Optics & Laser Technology, 121, 105767(2020).

    [10] Wang T Y, Li X, Bian J T et al. Research progress of laser-induced surface periodic structure[J]. Laser & Optoelectronics Progress, 58, 0700007(2021).

    [11] Yuan Y P, Li D F, Han W N et al. Adjustment of surface morphologies of subwavelength-rippled structures on titanium using femtosecond lasers: the role of incubation[J]. Applied Sciences, 9, 3401(2019).

    [12] Liu W, Jiang L, Han W N et al. Manipulation of LIPSS orientation on silicon surfaces using orthogonally polarized femtosecond laser double-pulse trains[J]. Optics Express, 27, 9782-9793(2019).

    [13] Nivas J J, Allahyari E, Skoulas E et al. Incident angle influence on ripples and grooves produced by femtosecond laser irradiation of silicon[J]. Applied Surface Science, 570, 151150(2021).

    [14] Albu C, Dinescu A, Filipescu M et al. Periodical structures induced by femtosecond laser on metals in air and liquid environments[J]. Applied Surface Science, 278, 347-351(2013).

    [15] Miyazaki K, Miyaji G. Nanograting formation through surface plasmon fields induced by femtosecond laser pulses[J]. Journal of Applied Physics, 114, 153108(2013).

    [16] Li Z M. Non-thermal ablation effect on silicon induced by femtosecond laser irradiation[D](2017).

    [17] Miyaji G, Miyazaki K. Nanoscale ablation on patterned diamondlike carbon film with femtosecond laser pulses[J]. Applied Physics Letters, 91, 123102(2007).

    [18] Maragkaki S, Lingos P C, Tsibidis G D et al. Impact of pre-patterned structures on features of laser-induced periodic surface structures[J]. Molecules, 26, 7330(2021).

    [19] Kodama S, Suzuki S, Hayashibe K et al. Control of short-pulsed laser induced periodic surface structures with machining-picosecond laser micro/nanotexturing with ultraprecision cutting[J]. Precision Engineering, 55, 433-438(2019).

    [20] Tsibidis G D, Stratakis E, Aifantis K E. Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions[J]. Journal of Applied Physics, 111, 053502(2012).

    [21] Vaghasiya H, Krause S, Miclea P T. Thermal and non-thermal ablation mechanisms in crystalline silicon by femtosecond laser pulses: classical approach of the carrier density two temperature model[J]. Journal of Physics D: Applied Physics, 55, 175109(2022).

    [22] Taylor L L, Xu J, Pomerantz M et al. Femtosecond laser polishing of germanium[J]. Optical Materials Express, 9, 4165-4177(2019).

    [23] Chen J K, Tzou D Y, Beraun J E. Numerical investigation of ultrashort laser damage in semiconductors[J]. International Journal of Heat and Mass Transfer, 48, 501-509(2005).

    [24] Moser R, Domke M, Winter J et al. Single pulse femtosecond laser ablation of silicon: a comparison between experimental and simulated two-dimensional ablation profiles[J]. Advanced Optical Technologies, 7, 255-264(2018).

    [25] Tsibidis G D, Barberoglou M, Loukakos P A et al. Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions[J]. Physical Review B, 86, 115316(2012).

    [26] Zhu H, Zhang Z Y, Xu J P et al. A numerical study of picosecond laser micro-grooving of single crystalline germanium: Mechanism discussion and process simulation[J]. Journal of Manufacturing Processes, 69, 351-367(2021).

    [27] Abdelmalek A, Kotsedi L, Bedrane Z et al. Optical and thermal behavior of germanium thin films under femtosecond laser irradiation[J]. Nanomaterials, 12, 3786(2022).

    [28] Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV[J]. Physical Review B, 27, 985-1009(1983).

    [29] Gan Y, Chen J K. Numerical analysis of ultrashort pulse laser-induced thermomechanical response of germanium thin films[J]. Nanoscale and Microscale Thermophysical Engineering, 16, 274-287(2012).

    [30] Schwarzbach C. Stability of finite element solutions to Maxwell’s equations in frequency domain[D](2009).

    [31] Huang M, Zhao F L, Cheng Y et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser[J]. ACS Nano, 3, 4062-4070(2009).

    [32] Derrien T J Y, Krüger J, Bonse J. Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions[J]. Journal of Optics, 18, 115007(2016).

    [33] Jellison G E, Jr, Lowndes D H. Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry[J]. Applied Physics Letters, 51, 352-354(1987).

    [34] Xue L. Laser preparation and mechanism of subwavelength grating structures on metal surfaces[D](2011).

    [35] Fu Q, Qian J, Wang G D et al. Heat accumulation effects in femtosecond laser-induced subwavelength periodic surface structures on silicon[J]. Chinese Optics Letters, 21, 051402(2023).

    [36] Schnell G, Duenow U, Seitz H. Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces[J]. Materials, 13, 969(2020).

    [37] Müller K, Mirabella F, Knigge X et al. Chemical and topographical changes upon sub-100-nm laser-induced periodic surface structure formation on titanium alloy: the influence of laser pulse repetition rate and number of over-scans[J]. Physica Status Solidi (a), 2300719(2023).

    [38] Dostovalov A V, Okotrub K A, Bronnikov K A et al. Influence of femtosecond laser pulse repetition rate on thermochemical laser-induced periodic surface structures formation by focused astigmatic Gaussian beam[J]. Laser Physics Letters, 16, 026003(2019).

    [39] Groenendijk M, Meijer J. Influence of the repetition rate on self organized surface structuring during femtosecond pulsed laser ablation[C](2006).

    [40] Zhang Y C, Jiang Q L, Cao K Q et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser[J]. Photonics Research, 9, 839-847(2021).

    [41] Lin X M, Li X H, Zhang Y B et al. Periodic structures on germanium induced by high repetition rate femtosecond laser[J]. Optics & Laser Technology, 101, 291-297(2018).

    [42] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 106, 104910(2009).

    [43] Casquero N, Fuentes-Edfuf Y, Zazo R et al. Generation, control and erasure of dual LIPSS in germanium with fs and ns laser pulses[J]. Journal of Physics D: Applied Physics, 53, 485106(2020).

    [44] Murphy R D, Torralva B, Adams D P et al. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features[J]. Applied Physics Letters, 104, 231117(2014).

    [45] Qi L T, Li F Z, Lin H P et al. On the formation of regular sub-wavelength ripples by femtosecond laser pulses on silicon[J]. Optik, 126, 4905-4909(2015).

    [46] Gao Y F, Yu C Y, Han B et al. Picosecond laser-induced periodic surface structures (LIPSS) on crystalline silicon[J]. Surfaces and Interfaces, 19, 100538(2020).

    [47] Hongo M, Matsuo S. Subnanosecond-laser-induced periodic surface structures on prescratched silicon substrate[J]. Applied Physics Express, 9, 062703(2016).

    [48] Lorens M, Zabila Y, Krupiński M et al. Micropatterning of silicon surface by direct laser interference lithography[J]. Acta Physica Polonica A, 121, 543-545(2012).

    Han Dai, Bing Han, Jing Zhang, Yanshuo Liu, Renjie Wang. Mechanism of Nanosecond and Picosecond Laser-Induced Periodic Structures Assisted by Prefabricated Structures on Single-Crystal Germanium Surfaces[J]. Chinese Journal of Lasers, 2024, 51(23): 2313001
    Download Citation