• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1504003 (2021)
Yang Xu1、2, Chongqi Zhou1、3、*, and Yonghong He1、2、**
Author Affiliations
  • 1Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
  • 2Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
  • 3Department of Physics, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.1504003 Cite this Article Set citation alerts
    Yang Xu, Chongqi Zhou, Yonghong He. Research Status of High-Precision Measurement Methods Based on Weak-Value Amplification[J]. Chinese Journal of Lasers, 2021, 48(15): 1504003 Copy Citation Text show less
    References

    [1] Aharonov Y, Albert D Z, Vaidman L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100[J]. Physical Review Letters, 60, 1351-1354(1988).

    [2] Leggett A J. Comment on “how the result of a measurement of a component of the spin of a spin-(1/2 particle can turn out to be 100”[J]. Physical Review Letters, 62, 2325(1989).

    [3] Peres A. Quantum measurements with postselection[J]. Physical Review Letters, 62, 2326(1989).

    [4] Duck I M, Stevenson P M, Sudarshan E C. The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100[J]. Physical Review D, 40, 2112-2117(1989).

    [5] Ritchie N W, Story J G, Hulet R G. Realization of a measurement of a “weak value”[J]. Physical Review Letters, 66, 1107-1110(1991).

    [6] Pryde G J, O’Brien J L, White A G et al. Measurement of quantum weak values of photon polarization[J]. Physical Review Letters, 94, 220405(2005).

    [7] Jozsa R. Complex weak values in quantum measurement[J]. Physical Review A, 76, 044103(2007).

    [8] Hosten O, Kwiat P. Observation of the spin Hall effect of light via weak measurements[J]. Science, 319, 787-790(2008).

    [9] Fleming S, Milne W I, Hasko D G. Continuous weak measurement of a trapped electron using a percolation field effect transistor[J]. Applied Physics Letters, 103, 093110(2013).

    [10] Zilberberg O, Romito A, Gefen Y. Charge sensing amplification via weak values measurement[J]. Physical Review Letters, 106, 080405(2011).

    [11] Chen S Z, Mi C Q, Cai L et al. Observation of the Goos-Hänchen shift in graphene via weak measurements[J]. Applied Physics Letters, 110, 031105(2017).

    [12] Parks A D, Spence S E. Weak value amplification of an off-resonance Goos-Hänchen shift in a Kretschmann-Raether surface plasmon resonance device[J]. Applied Optics, 54, 5872-5876(2015).

    [13] Jayaswal G, Mistura G, Merano M. Weak measurement of the Goos-Hänchen shift[J]. Optics Letters, 38, 1232-1234(2013).

    [14] Jayaswal G, Mistura G, Merano M. Observation of the Imbert-Fedorov effect via weak value amplification[J]. Optics Letters, 39, 2266-2269(2014).

    [15] Goswami S, Pal M, Nandi A et al. Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection[J]. Optics Letters, 39, 6229-6232(2014).

    [16] Prajapati C, Viswanathan N K. Simultaneous weak measurement of angular and spatial Goos-Hänchen and Imbert-Fedorov shifts[J]. Journal of Optics, 19, 105611(2017).

    [17] Dixon P B, Starling D J, Jordan A N et al. Ultrasensitive beam deflection measurement via interferometric weak value amplification[J]. Physical Review Letters, 102, 173601(2009).

    [18] Park S J, Kim H J, Noh J. Weak value measurement of an optical beam deflection in image rotating Sagnac interferometer[J]. Journal of the Optical Society of Korea, 16, 277-281(2012).

    [19] Qiu X D, Zhou X X, Hu D J et al. Determination of magneto-optical constant of Fe films with weak measurements[J]. Applied Physics Letters, 105, 131111(2014).

    [20] Salazar-Serrano L J, Barrera D, Amaya W et al. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification[J]. Optics Letters, 40, 3962-3965(2015).

    [21] Viza G I, Martínez-Rincón J, Howland G A et al. Weak-values technique for velocity measurements[J]. Optics Letters, 38, 2949-2952(2013).

    [22] Wang Q, Sun F W, Zhang Y S et al. Experimental demonstration of a method to realize weak measurement of the arrival time of a single photon[J]. Physical Review A, 73, 023814(2006).

    [23] Pfeifer M, Fischer P. Weak value amplified optical activity measurements[J]. Optics Express, 19, 16508-16517(2011).

    [24] Qiu X D, Xie L G, Liu X et al. Estimation of optical rotation of chiral molecules with weak measurements[J]. Optics Letters, 41, 4032-4035(2016).

    [25] Xie L G, Qiu X D, Luo L et al. Quantitative detection of the respective concentrations of chiral compounds with weak measurements[J]. Applied Physics Letters, 111, 191106(2017).

    [26] Li C F, Xu X Y, Tang J S et al. Ultrasensitive phase estimation with white light[J]. Physical Review A, 83, 044102(2011).

    [27] Xu X Y, Kedem Y, Sun K et al. Phase estimation with weak measurement using a white light source[J]. Physical Review Letters, 111, 033604(2013).

    [28] Li D, Shen Z, He Y et al. Application of quantum weak measurement for glucose concentration detection[J]. Applied Optics, 55, 1697-1702(2016).

    [29] Kedem Y. Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values[J]. Physical Review A, 85, 060102(2012).

    [30] Jordan A N, Martínez-Rincón J, Howell J C. Technical advantages for weak-value amplification: when less is more[J]. Physical Review X, 4, 011031(2014).

    [31] Starling D J, Dixon P B, Jordan A N et al. Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values[J]. Physical Review A, 80, 041803(2009).

    [32] Feizpour A, Xing X X, Steinberg A M. Amplifying single-photon nonlinearity using weak measurements[J]. Physical Review Letters, 107, 133603(2011).

    [33] Kedem Y. Using technical noise to increase the signal-to-noise ratio of measurements via imaginary weak values[J]. Physical Review A, 85, 060102(2012).

    [34] Brunner N, Simon C. Measuring small longitudinal phase shifts: weak measurements or standard interferometry?[J]. Physical Review Letters, 105, 010405(2010).

    [35] Zhou C Q, Zhong S Y, Ma K J et al. Measuring angular rotation via the rotatory dispersion effect[J]. Physical Review A, 102, 063717(2020).

    [36] Liu W T, Martínez-Rincón J, Viza G I et al. Anomalous amplification of a homodyne signal via almost-balanced weak values[J]. Optics Letters, 42, 903-906(2017).

    [37] Starling D J, Dixon P B, Jordan A N et al. Precision frequency measurements with interferometric weak values[J]. Physical Review A, 82, 063822(2010).

    [38] Hogan J M, Hammer J, Chiow S W et al. Precision angle sensor using an optical lever inside a Sagnac interferometer[J]. Optics Letters, 36, 1698-1700(2011).

    [39] Martínez-Rincón J, Liu W T, Viza G I et al. Can anomalous amplification be attained without postselection?[J]. Physical Review Letters, 116, 100803(2016).

    [40] Qin Y, Li Y, He H et al. Measurement of spin Hall effect of reflected light[J]. Optics Letters, 34, 2551-2553(2009).

    [41] Luo H L, Zhou X X, Shu W X et al. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection[J]. Physical Review A, 84, 043806(2011).

    [42] Ménard J M, Mattacchione A E, van Driel H M et al. Ultrafast optical imaging of the spin Hall effect of light in semiconductors[J]. Physical Review B, 82, 045303(2010).

    [43] Gorodetski Y, Niv A, Kleiner V et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 101, 043903(2008).

    [44] Shitrit N, Bretner I, Gorodetski Y et al. Optical spin Hall effects in plasmonic chains[J]. Nano Letters, 11, 2038-2042(2011).

    [45] Zhou X X, Xiao Z C, Luo H L et al. Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements[J]. Physical Review A, 85, 043809(2012).

    [46] Zhou X X, Sheng L J, Ling X H. Photonic spin Hall effect enabled refractive index sensor using weak measurements[J]. Scientific Reports, 8, 1221(2018).

    [47] Zhou X X, Zhang J, Ling X H et al. Photonic spin Hall effect in topological insulators[J]. Physical Review A, 88, 053840(2013).

    [48] Long W J, Pan J T, Guo X Y et al. Optimized weak measurement of orbital angular momentum-induced beam shifts in optical reflection[J]. Photonics Research, 7, 1273-1278(2019).

    [49] Zhang Y, Li D, He Y et al. Optical weak measurement system with common path implementation for label-free biomolecule sensing[J]. Optics Letters, 41, 5409-5412(2016).

    [50] Guan T, Wang X N, Li D M et al. Determination of tumor marker carcinoembryonic antigen with biosensor based on optical quantum weak measurements[J]. Sensors, 18, 1550-1562(2018).

    [51] Xu Y, Shi L, Guan T et al. Optimization of a quantum weak measurement system with digital filtering technology[J]. Applied Optics, 57, 7956-7966(2018).

    [52] Li D M, Guan T, He Y H et al. A chiral sensor based on weak measurement for the determination of proline enantiomers in diverse measuring circumstances[J]. Biosensors and Bioelectronics, 110, 103-109(2018).

    [53] Li D M, Guan T, Liu F et al. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain[J]. Applied Physics Letters, 112, 213701(2018).

    [54] Li D M, Guan T, Jiang J Y et al. Nondisturbing transverse acoustic sensor based on weak measurement in Mach-Zehnder interferometer[J]. Optical Engineering, 56, 034107(2017).

    [55] He Y H, Li D M. Method for detecting underwater sound field information, device and underwater acoustic sensor: CN105928605A[P](2016).

    [56] Li D M, He Q H, He Y H et al. Molecular imprinting sensor based on quantum weak measurement[J]. Biosensors and Bioelectronics, 94, 328-334(2017).

    [57] Xin M G, Zeng L, Ran D et al. Label-free rapid identification of cooked meat using MIP-quantum weak measurement[J]. Food and Agricultural Immunology, 31, 317-328(2020).

    [58] Zhang Y J, Shi L X, Xu Y et al. Optical quantum weak measurement coupled with UV spectrophotometry for sensitively and non-separatedly detecting enantiopurity[J]. Optics Express, 27, 9330-9342(2019).

    [59] Qiao Z, Shi L X, Guan T et al. The real-time determination of D- and L-lactate based on optical weak measurement[J]. Analytical Methods, 11, 2223-2230(2019).

    [60] Guan T, Yang Y X, Zhang Q W et al. Label-free and non-destruction determination of single-and double-strand DNA based on quantum weak measurement[J]. Scientific Reports, 9, 1891(2019).

    [61] Zhong S Y, Guan T, Xu Y et al. Weak measurement-based sensor for the rapid identification of L(+)-ascorbic acid and D(-)-isoascorbic acid[J]. Applied Optics, 58, 8583-8588(2019).

    [62] Zhong S Y, Guan T, Xu Y et al. Simultaneous sensing axial and radial magnetic fields based on weak measurement[J]. Optics Communications, 486, 126777(2021).

    [63] Xu Y, Shi L X, Guan T et al. Optimization of a quantum weak measurement system with its working areas[J]. Optics Express, 26, 21119-21131(2018).

    [64] Xu Y, Shi L X, Li S X et al. Detection of macromolecular content in a mixed solution of protein macromolecules and small molecules using a weak measurement linear differential system[J]. Analytical Chemistry, 91, 11576-11581(2019).

    [65] Xu Y, Shi L X, Guan T et al. Rapid separation of enantiomeric impurities in chiral molecules by a self-referential weak measurement system[J]. Sensors, 18, 3788(2018).

    [66] Li D M, Guan T, He Y H et al. A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection[J]. Journal of Physics D, 50, 49LT01(2017).

    [67] Xiong N, Guan T, Xu Y et al. A differential detection method based on a linear weak measurement system[J]. Sensors, 19, 2473(2019).

    [68] Xu Y, Shi L X, Guan T et al. Multifunctional weak measurement system that can measure the refractive index and optical rotation of a solution[J]. Applied Physics Letters, 114, 181901(2019).

    [69] Shi L X, Guan T, Xu Y et al. Enhanced interferometric weak value amplification with multiple reflection[J]. IEEE Photonics Technology Letters, 31, 1557-1560(2019).

    [70] Huang J Z, Li Y J, Fang C et al. Toward ultrahigh sensitivity in weak-value amplification[J]. Physical Review A, 100, 012109(2019).

    [71] Wu C W, Zhang J, Xie Y et al. Scheme and experimental demonstration of fully atomic weak-value amplification[J]. Physical Review A, 100, 062111(2019).

    [72] Pan Y M, Zhang J, Cohen E et al. Weak-to-strong transition of quantum measurement in a trapped-ion system[J]. Nature Physics, 16, 1206-1210(2020).

    [73] Sun K, Zhou H, Yang Y K et al. Research advances in blood glucose monitoring system[J]. Chinese Journal of Lasers, 45, 0207003(2018).

    [74] Liu H, Bai B B, Zhang Y Z et al. High-sensitivity temperature measurement based on SPR in gold-PDMS-coated photonic crystal fiber[J]. Chinese Journal of Lasers, 47, 0404003(2020).

    [75] Wang J P, Chen M H, Tan W J et al. Dual-modality endoscopic probe for optical coherence tomography imaging and pH sensing[J]. Chinese Journal of Lasers, 47, 0907001(2020).

    Yang Xu, Chongqi Zhou, Yonghong He. Research Status of High-Precision Measurement Methods Based on Weak-Value Amplification[J]. Chinese Journal of Lasers, 2021, 48(15): 1504003
    Download Citation