• Frontiers of Optoelectronics
  • Vol. 13, Issue 4, 307 (2020)
Zhongwen CHENG1, Haigang MA2, Zhiyang WANG2, and Sihua YANG1,2,*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • show less
    DOI: 10.1007/s12200-020-1040-0 Cite this Article
    Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Frontiers of Optoelectronics, 2020, 13(4): 307 Copy Citation Text show less
    References

    [1] Valvis S M, Waithman J, Wood F M, Fear M W, Fear V S. The immune response to skin trauma is dependent on the etiology of injury in a mouse model of burn and excision. Journal of Investigative Dermatology, 2015, 135(8): 2119-2128

    [2] Qin W, Li Y, Wang J, Qi X, Wang R K. In vivo monitoring of microcirculation in burn healing process with optical microangiography. Advances in Wound Care, 2016, 5(8): 332-337

    [3] Wang H, Shi L, Qin J, Yousefi S, Li Y, Wang R K. Multimodal optical imaging can reveal changes in microcirculation and tissue oxygenation during skin wound healing. Lasers in Surgery and Medicine, 2014, 46(6): 470-478

    [4] Hoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, Monstrey S. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns, 2009, 35(1): 36-45

    [5] Deegan A J, Wang W, Men S, Li Y, Song S, Xu J, Wang R K. Optical coherence tomography angiography monitors human cutaneous wound healing over time. Quantitative Imaging in Medicine and Surgery, 2018, 8(2): 135-150

    [6] Kumar I, Staton C A, Cross S S, Reed M W, Brown N J. Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 2009, 96(12): 1484-1491

    [7] Wang N, Wei H, Jin Y, Chen L, Zhang Q, Deng X. Monitoring skin trauma healing in mice using second-harmonic generation combined with optical coherence tomography. IEEE Photonics Journal, 2017, 9(4): 1-12

    [8] Atiyeh B S, Gunn SW, Hayek S N. State of the art in burn treatment. World Journal of Surgery, 2005, 29(2): 131-148

    [9] till JM, Law E J, Klavuhn K G, Island T C, Holtz J Z. Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial. Burns, 2001, 27(4): 364-371

    [10] McUmber H, Dabek R J, Bojovic B, Driscoll D N. Burn depth analysis using indocyanine green fluorescence: a review. Journal of Burn Care & Research, 2019, 40(4): 513-516

    [11] Qin J, Jiang J, An L, Gareau D, Wang R K. In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography. Lasers in Surgery and Medicine, 2011, 43(2): 122-129

    [12] Burke-Smith A, Collier J, Jones I. A comparison of non-invasive imaging modalities: infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns, 2015, 41(8): 1695-1707

    [13] Pape S A, Skouras C A, Byrne P O. An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns, 2001, 27(3): 233-239

    [14] Pierce M C, Sheridan R L, Hyle Park B, Cense B, de Boer J F. Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns, 2004, 30(6): 511-517

    [15] Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191-5197

    [16] Schwarz M, Soliman D, Omar M, Buehler A, Ovsepian S V, Aguirre J, Ntziachristos V. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Transactions on Medical Imaging, 2017, 36(6): 1287-1296

    [17] Liu W, Yao J. Photoacoustic microscopy: principles and biomedical applications. Biomedical Engineering Letters, 2018, 8(2): 203-213

    [18] Yao J,Wang L, Yang J M, Maslov K I,Wong T T, Li L, Huang C H, Zou J, Wang L V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nature Methods, 2015, 12(5): 407-410

    [19] Yang J, Zhang G,Wu M, Shang Q, Huang L, Jiang H. Photoacoustic assessment of hemodynamic changes in foot vessels. Journal of Biophotonics, 2019, 12(6): e201900004

    [20] Ma H, Cheng Z, Wang Z, Xiong K, Yang S. Fast controllable confocal focus photoacoustic microscopy using a synchronous zoom opto-sono objective. Optics Letters, 2019, 44(7): 1880-1883

    [21] Xu D, Yang S, Wang Y, Gu Y, Xing D. Noninvasive and highresolving photoacoustic dermoscopy of human skin. Biomedical Optics Express, 2016, 7(6): 2095-2102

    [22] Zhou W, Hu Y, Chen Z, Xing D. All-optical photoacoustic and reflectance confocal microscopy for melanoma characterization. Applied Physics Letters, 2019, 114(16): 163704

    [23] Ma H, Cheng Z,Wang Z, Gu Y, Zhang T, Qiu H, Yang S. Fast linear confocal scanning photoacoustic dermoscopy for non-invasive assessment of chromatodermatosis. Applied Physics Letters, 2018, 113(8): 083704

    [24] Li X, Dinish U S, Aguirre J, Bi R, Dev K, Attia A B E, Nitkunanantharajah S, Lim Q H, Schwarz M, Yew Y W, Thng S T G, Ntziachristos V, Olivo M. Optoacoustic mesoscopy analysis and quantitative estimation of specific imaging metrics in Fitzpatrick skin phototypes II to V. Journal of Biophotonics, 2019, 12(9): e201800442

    [25] Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Kilian Eyerich K, Ntziachristos V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nature Biomedical Engineering, 2017, 1(5): 0068

    [26] Zhang W, Li Y, Nguyen V P, Huang Z, Liu Z,Wang X, Paulus YM. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization. Light, Science & Applications, 2018, 7(1): 103

    [27] Tian C, Zhang W, Mordovanakis A, Wang X, Paulus Y M. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography. Optics Express, 2017, 25(14): 15947-15955

    [28] Ma H, Xiong K, Wu J, Ji X, Yang S. Noncontact photoacoustic angiography with an air-coupled ultrasonic transducer for evaluation of burn injury. Applied Physics Letters, 2019, 114(13): 133701

    [29] Yang J, Gong L, Xu X, Hai P, Shen Y, Suzuki Y, Wang L V. Motionless volumetric photoacoustic microscopy with spatially invariant resolution. Nature Communications, 2017, 8(1): 780

    [30] Hajireza P, Forbrich A, Zemp R J. Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration. Optics Letters, 2013, 38(15): 2711-2713

    [31] Li B, Qin H, Yang S, Xing D. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens. Optics Express, 2014, 22(17): 20130-20137

    [32] Yeh C, Soetikno B, Hu S, Maslov K I, Wang L V. Microvascular quantification based on contour-scanning photoacoustic microscopy. Journal of Biomedical Optics, 2014, 19(9): 096011

    [33] Yang X, Jiang B, Song X, Wei J, Luo Q. Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens. Optics Express, 2017, 25(7): 7349-7357

    [34] Yang X, Song X, Jiang B, Luo Q. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse. Optics Express, 2017, 25(23): 28192-28200

    [35] Jiang B, Yang X, Luo Q. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries. Optics Express, 2016, 24(18): 20167-20176

    [36] Chen B, Huang X, Gou D, Zeng J, Chen G, Pang M, Hu Y, Zhao Z, Zhang Y, Zhou Z, Wu H, Cheng H, Zhang Z, Xu C, Li Y, Chen L, Wang A. Rapid volumetric imaging with Bessel-beam three-photon microscopy. Biomedical Optics Express, 2018, 9(4): 1992-2000

    [37] Shi J, Wang L, Noordam C, Wang L V. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field. Journal of Biomedical Optics, 2015, 20(11): 116002

    [38] Liu Z, Fulop G F, Flores A, Wang M R, Yang J J. Infrared imaging lens with extended depth of focus. In: Proceedings of SPIE Infrared Technology and Applications XXXI. Bellingham: SPIE, 2005, 841- 848

    [39] Durnin J, Miceli J Jr, Eberly J H. Diffraction-free beams. Physical Review Letters, 1987, 58(15): 1499-1501

    [40] Song W,Wu Y, Gao Y, Chen T, Zheng W, Fang H, Song L, Yuan X. Flexibly adjustable depth-of-focus photoacoustic microscopy with spatial light modulation. Applied Physics Letters, 2018, 113(16): 163502

    [41] Flores A, Wang M R, Yang J J. Achromatic hybrid refractivediffractive lens with extended depth of focus. Applied Optics, 2004, 43(30): 5618-5630

    [42] Li X, Xiong K, Yang S. Large-depth-of-field optical-resolution colorectal photoacoustic endoscope. Applied Physics Letters, 2019, 114(16): 163703

    [43] Cheng Z, Ma H, Wang Z, Yang S. 3D depth-coded photoacoustic microscopy with a large field of view for human skin imaging. Chinese Optics Letters, 2018, 16(8): 081701

    [44] Zhang W, Ma H, Cheng Z, Wang Z, Zhang L, Yang S. Miniaturized photoacoustic probe for in vivo imaging of subcutaneous microvessels within human skin. Quantitative Imaging in Medicine and Surgery, 2019, 9(5): 807-814

    [45] Chen Q, Guo H, Jin T, Qi W, Xie H, Xi L. Ultracompact highresolution photoacoustic microscopy. Optics Letters, 2018, 43(7): 1615-1618

    [46] Wang H, Yang X, Liu Y, Jiang B, Luo Q. Reflection-mode opticalresolution photoacoustic microscopy based on a reflective objective. Optics Express, 2013, 21(20): 24210-24218

    [47] Matts P J, Dykes P J, Marks R. The distribution of melanin in skin determined in vivo. British Journal of Dermatology, 2007, 156(4): 620-628

    [48] Hu Y, Chen Z, Xiang L, Xing D. Extended depth-of-field all-optical photoacoustic microscopy with a dual non-diffracting Bessel beam. Optics Letters, 2019, 44(7): 1634-1637

    Zhongwen CHENG, Haigang MA, Zhiyang WANG, Sihua YANG. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Frontiers of Optoelectronics, 2020, 13(4): 307
    Download Citation