• Nano-Micro Letters
  • Vol. 16, Issue 1, 040 (2024)
Qianqian Wang1,†,*, Shihao Yang2,†, and Li Zhang2,3,4,5,**
Author Affiliations
  • 1Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People’s Republic of China
  • 2Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, People’s Republic of China
  • 3Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, People’s Republic of China
  • 4T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, People’s Republic of China
  • 5Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01261-9 Cite this Article
    Qianqian Wang, Shihao Yang, Li Zhang. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform[J]. Nano-Micro Letters, 2024, 16(1): 040 Copy Citation Text show less
    References

    [1] Y. Orooji, H. Sohrabi, N. Hemmat, F. Oroojalian, B. Baradaran et al., An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Lett. 13, 18 (2021).

    [2] L. Alder, K. Greulich, G. Kempe, B. Vieth, Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25(6), 838–865 (2006).

    [3] A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021).

    [4] W.T. Duan, W. Wang, S. Das, V. Yadav, T.E. Mallouk et al., Synthetic nano- and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311–333 (2015).

    [5] X. Fang, B.Y. Zong, S. Mao, Metal-organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett. 10, 64 (2018).

    [6] H. Ye, Y. Wang, D.D. Xu, X.J. Liu, S.M. Liu et al., Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 23, 101007 (2021).

    [7] J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 140(30), 9317–9331 (2018).

    [8] L.J. Cai, D.Y. Xu, Z.Y. Zhang, N. Li, Y.J. Zhao, Tailoring functional micromotors for sensing. Research 6, 0044 (2023).

    [9] L. Kong, J.G. Guan, M. Pumera, Micro-and nanorobots based sensing and biosensing. Curr. Opin. Electroche. 10, 174–182 (2018).

    [10] H.S. Lin, W.Z. Yu, K.A. Sabet, M. Bogumil, Y.C. Zhao et al., Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature 611, 570–577 (2022).

    [11] J.J. Zhuang, J.X. Yin, S.W. Lv, B. Wang, Y. Mu, Advanced “lab-on-a-chip” to detect viruses–Current challenges and future perspectives. Biosens. Bioelectron. 163, 112291 (2020).

    [12] J.Y. Cheong, H. Yu, C.Y. Lee, J.U. Lee, H.J. Choi et al., Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 4(12), 1159–1167 (2020).

    [13] Q.Q. Wang, J.C. Zhang, J.F. Yu, J. Lang, Z.Y. Lyu et al., Untethered small-scale machines for microrobotic manipulation: from individual and multiple to collective machines. ACS Nano 17(14), 13081–13109 (2023).

    [14] B. Wang, K. Kostarelos, B.J. Nelson, L. Zhang, Trends in micro-/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 33(4), 2002047 (2021).

    [15] Z.G. Wu, Y. Chen, D. Mukasa, O.S. Pak, W. Gao, Medical micro/nanorobots in complex media. Chem. Soc. Rev. 49(22), 8088–8112 (2020).

    [16] S. Sánchez, L. Soler, J. Katuri, Chemically powered micro-and nanomotors. Angew. Chem. Int. Ed. 54(5), 1414–1444 (2015).

    [17] A.A. Solovev, Y.F. Mei, E. Bermúdez Ureña, G.S. Huang, O.G. Schmidt, Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5(14), 1688–1692 (2009).

    [18] M.E. Ibele, P.E. Lammert, V.H. Crespi, A. Sen, Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4(8), 4845–4851 (2010).

    [19] W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk et al., Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128(46), 14881–14888 (2006).

    [20] D.K. Zhou, Y.C. Li, P.T. Xu, L.Q. Ren, G.Y. Zhang et al., Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 9(32), 11434–11438 (2017).

    [21] H. Zhang, W.T. Duan, L. Liu, A. Sen, Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135(42), 15734–15737 (2013).

    [22] H.R. Jiang, N. Yoshinaga, M. Sano, Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105(26), 268302 (2010).

    [23] U. Bozuyuk, A. Aghakhani, Y. Alapan, M. Yunusa, P. Wrede et al., Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat. Commun. 13, 6289 (2022).

    [24] C.Y. Huang, Z.Y. Lai, X.Y. Wu, T.T. Xu, Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots. Cyborg. Bionic. Syst. 2022, 0004 (2022).

    [25] A. Aghakhani, O. Yasa, P. Wrede, M. Sitti, Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. 117, 3469–3477 (2020).

    [26] L.Q. Ren, N. Nama, J.M. McNeill, F. Soto, Z.F. Yan et al., 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 5, eaax3084 (2019).

    [27] P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao et al., Propulsion of nanowire diodes. Chem. Commun. 46(10), 1623–1624 (2010).

    [28] J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten et al., Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15(10), 1095–1099 (2016).

    [29] R.F. Dong, Y. Hu, Y.F. Wu, W. Gao, B.Y. Ren et al., Visible-light-driven BiOI-based Janus micromotor in pure water. J. Am. Chem. Soc. 139(5), 1722–1725 (2017).

    [30] L.L. Xu, F.Z. Mou, H.T. Gong, M. Luo, J.G. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017).

    [31] Q.Q. Wang, L. Zhang, External power-driven microrobotic swarm: from fundamental understanding to imaging-guided delivery. ACS Nano 15(1), 149–174 (2021).

    [32] H.J. Zhou, C.C. Mayorga-Martinez, S. Pané, L. Zhang, M. Pumera, Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021).

    [33] H.Y. Zhang, Z.S. Li, C.Y. Gao, X.J. Fan, Y.X. Pang et al., Dual responsive biohybrid neutrobots for active target delivery. Sci. Robot 6(52), eaaz9519 (2021).

    [34] C.K. Schmidt, M. Medina-Sánchez, R.J. Edmondson, O.G. Schmidt, Engineering microrobots for targeted cancer therapies from a medical perspective. Nat. Commun. 11, 5618 (2020).

    [35] J.H. Li, L. Dekanovsky, B. Khezri, B. Wu, H.J. Zhou et al., Biohybrid micro and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022).

    [36] D.K. Zhou, Y. Gao, J.J. Yang, Y.C. Li, G.B. Shao et al., Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 5(7), 1800122 (2018).

    [37] B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010).

    [38] M. Sitti, H. Ceylan, W.Q. Hu, J. Giltinan, M. Turan et al., Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103(2), 205–224 (2015).

    [39] T.L. Li, S.M. Yu, B. Sun, Y.L. Li, X.L. Wang et al., Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci. Adv. 9(18), eadg4501 (2023).

    [40] M. Ye, Y. Zhou, H.Y. Zhao, X.P. Wang, Magnetic microrobots with folate targeting for drug delivery. Cyborg. Bionic. Syst. 4, 0019 (2023).

    [41] S. Ghosh, A. Ghosh, Mobile nanotweezers for active colloidal manipulation. Sci. Robot. 3(14), eaaq0076 (2018).

    [42] D.D. Jin, Q.L. Wang, K.F. Chan, N. Xia, H.J. Yang et al., Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 9(19), 9278 (2023).

    [43] J.J. Wang, R.F. Dong, H.Y. Wu, Y.P. Cai, B.Y. Ren, A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 12, 11 (2020).

    [44] J.X. Li, B. Esteban-Fernández de Ávila, W. Gao, L.F. Zhang, J. Wang, Micro/nanorobots for biomedicine: delivery, surgery, sensing, and detoxification. Sci. Robot. 2(4), eaam6431 (2017).

    [45] Q.Q. Wang, K.F. Chan, K. Schweizer, X.Z. Du, D.D. Jin et al., Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7(9), eabe5914 (2021).

    [46] J.B. Knight, A. Vishwanath, J.P. Brody, R.H. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80(17), 3863 (1998).

    [47] L. Soler, V. Magdanz, V.M. Fomin, S. Sanchez, O.G. Schmidt, Self-propelled micromotors for cleaning polluted water. ACS Nano 7(11), 9611–9620 (2013).

    [48] J. Orozco, B. Jurado-Sanchez, G. Wagner, W. Gao, R. Vazquez-Duhalt et al., Bubble-propelled micromotors for enhanced transport of passive tracers. Langmuir 30(18), 5082–5087 (2014).

    [49] F. Soto, E. Karshalev, F.Y. Zhang, B. Esteban Fernandez de Avila, A. Nourhani et al. (2021) Smart materials for microrobots. Chem. Rev. 122(5), 5365–5403.

    [50] F. Peng, Y.F. Tu, D.A. Wilson, Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem. Soc. Rev. 46(17), 5289–5310 (2017).

    [51] P.L. Venugopalan, B. Esteban-Fernandez de Ávila, M. Pal, A. Ghosh, J. Wang, Fantastic voyage of nanomotors into the cell. ACS Nano 14(8), 9423–9439 (2020).

    [52] A. Molinero-Fernández, M. Moreno-Guzmán, M.A. López, A. Escarpa, Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Anal. Chem. 89(20), 10850–10857 (2017).

    [53] L. Kong, N. Rohaizad, M.Z.M. Nasir, J.G. Guan, M. Pumera, Micromotor-assisted human serum glucose biosensing. Anal. Chem. 91(9), 5660–5666 (2019).

    [54] J. Kim, C.C. Mayorga-Martinez, J. Vyskočil, D. Ruzek, M. Pumera, Plasmonic magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Appl. Mater. Today 27, 101402 (2022).

    [55] F. Serwane, A. Mongera, P. Rowghanian, D.A. Kealhofer, A.A. Lucio et al., In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Med. 14(2), 181–186 (2017).

    [56] V.d. la Asunción-Nadal, M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Chalcogenides-based tubular micromotors in fluorescent assays. Anal. Chem. 92(13), 9188–9193 (2020).

    [57] Y.B. Zhang, L. Zhang, L.D. Yang, C.I. Vong, K.F. Chan et al., Real-time tracking of fluorescent magnetic spore–based microrobots for remote detection of C. diff toxins. Sci. Adv. 5(1), eaau9650 (2019).

    [58] M. Liu, Y.Y. Sun, T.P. Wang, Z.R. Ye, H. Zhang et al., A biodegradable, all-polymer micromotor for gas sensing applications. J. Mater. Chem. C 4(25), 5945–5952 (2016).

    [59] B. Esteban-Fernández de Ávila, A. Martín, F. Soto, M.A. Lopez-Ramirez, S. Campuzano et al., Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9(7), 6756–6764 (2015).

    [60] T. Patino, A. Porchetta, A. Jannasch, A. Lladó, T. Stumpp et al., Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19(6), 3440–3447 (2019).

    [61] B. Esteban-Fernandez de Ávila, M.A. Lopez-Ramirez, D.F. Báez, A. Jodra, V.V. Singh et al., Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sens. 1(3), 217–221 (2016).

    [62] V.V. Singh, K. Kaufmann, J. Orozco, J. Li, M. Galarnyk et al., Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chem. Commun. 51(56), 11190–11193 (2015).

    [63] B. Jurado-Sánchez, M. Pacheco, J. Rojo, A. Escarpa, Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56(24), 6957–6961 (2017).

    [64] Á. Molinero-Fernández, A. Jodra, M. Moreno-Guzmán, M.Á. López, A. Escarpa, Magnetic reduced graphene oxide/nickel/platinum nanoparticles micromotors for mycotoxin analysis. Chem. Eur. J. 24(28), 7172–7176 (2018).

    [65] M. Pacheco, B. Jurado-Sánchez, A. Escarpa, Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 90(4), 2912–2917 (2018).

    [66] O. Ergeneman, G. Dogangil, M.P. Kummer, J.J. Abbott, M.K. Nazeeruddin et al., A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sens. J. 8(1), 29–37 (2008).

    [67] O. Ergeneman, G. Chatzipirpiridis, J. Pokki, M. Marin-Suárez, G.A. Sotiriou et al., In vitro oxygen sensing using intraocular microrobots. IEEE Trans. Biomed. Eng. 59(11), 3104–3109 (2012).

    [68] H.F. Dong, J.P. Lei, L. Ding, Y.Q. Wen, H.X. Ju et al., MicroRNA: function, detection, and bioanalysis. Chem. Rev. 113(8), 6207–6233 (2013).

    [69] S. Shi, J. Chen, X.W. Wang, M.S. Xiao, A.R. Chandrasekaran et al., Biointerface engineering with nucleic acid materials for biosensing applications. Adv. Funct. Mater. 32(37), 2201069 (2022).

    [70] T.H. Kim, D. Lee, J.W. Choi, Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosens. Bioelectron. 94, 485–499 (2017).

    [71] N. Rohaizad, C.C. Mayorga-Martinez, M. Fojt, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 50(1), 619–657 (2021).

    [72] A. Bolotsky, D. Butler, C.Y. Dong, K. Gerace, N.R. Glavin et al., Two-dimensional materials in biosensing and healthcare: from in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019).

    [73] M. Sentic, S. Arbault, B. Goudeau, D. Manojlovic, A. Kuhn, L. Bouffier, N. Sojic, Electrochemiluminescent swimmers for dynamic enzymatic sensing. Chem. Commun. 50(71), 10202–10205 (2014).

    [74] A. Molinero-Fernandez, M. Moreno-Guzmán, L. Arruza, M.A. López, A. Escarpa, Polymer-based micromotor fluorescence immunoassay for on-the move sensitive procalcitonin determination in very low birth weight infants’ plasma. ACS Sens. 5(5), 1336–1344 (2020).

    [75] K. Wang, W.J. Wang, S.H. Pan, Y.M. Fu, B. Dong et al., Fluorescent self-propelled covalent organic framework as a microsensor for nitro explosive detection. Appl. Mater. Today 19, 100550 (2020).

    [76] D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh et al., Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131(34), 12082–12083 (2009).

    [77] B. Ezhilan, W. Gao, A. Pei, I. Rozen, R.F. Dong et al., Motion-based threat detection using microrods: experiments and numerical simulations. Nanoscale 7(17), 7833–7840 (2015).

    [78] J. Wu, S. Balasubramanian, D. Kagan, K.M. Manesh, S. Campuzano et al., Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010).

    [79] K. Van Nguyen, S.D. Minteer, DNA-functionalized pt nanoparticles as catalysts for chemically powered micromotors: toward signal-on motion-based DNA biosensor. Chem. Commun. 51(23), 4782–4784 (2015).

    [80] [M.S. Draz, N.K. Lakshminaraasimulu, S. Krishnakumar, D. Battalapalli, A. Vasan et al., Motion-based immunological detection of Zika virus using Pt nanomotors and a cellphone. ACS Nano 12(6), 5709–5718 (2018).

    [81] Y.J. Su, Y. Ge, L.M. Liu, L.N. Zhang, M. Liu et al., Motion-based pH sensing based on the cartridge-case-like micromotor. ACS Appl. Mater. Interfaces 8(6), 4250–4257 (2016).

    [82] M.T. Li, H. Zhang, M. Liu, B. Dong, Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 5(18), 4400–4407 (2017).

    [83] J. Orozco, Victor García-Gradilla, M. D’Agostino, W. Gao, A. Cortés et al., Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1), 818–824 (2013).

    [84] V.V. Singh, K. Kaufmann, B.E.F. de Ávila, M. Uygun, J. Wang, Nanomotors responsive to nerve-agent vapor plumes. Chem. Commun. 52(16), 3360–3363 (2016).

    [85] J.G.S. Moo, H. Wang, G.J. Zhao, M. Pumera, Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem. Eur. J. 20(15), 4292–4296 (2014).

    [86] T. Maric, C.C. Mayorga-Martinez, M.Z.M. Nasir, M. Pumera, Platinum halloysite nanoclay nanojets as sensitive and selective mobile nanosensors for mercury detection. Adv. Mater. Technol. 4(2), 1800502 (2019).

    [87] Y.Z. Xie, S.Z. Fu, J. Wu, J.P. Lei, H.X. Ju, Motor-based microprobe powered by bio-assembled catalase for motion detection of DNA. Biosens. Bioelectron. 87, 31–37 (2017).

    [88] S.Z. Fu, X.Q. Zhang, Y.Z. Xie, J. Wu, H.X. Ju, An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection. Nanoscale 9(26), 9026–9033 (2017).

    [89] X.Q. Zhang, C.T. Chen, J. Wu, H.X. Ju, Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl. Mater. Interfaces 11(14), 13581–13588 (2019).

    [90] M.S. Draz, K.M. Kochehbyoki, A. Vasan, D. Battalapalli, A. Sreeram et al., DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics. Nat. Commun. 9, 4282 (2018).

    [91] L. Wang, T.L. Li, L.Q. Li, J.Y. Wang, W.P. Song et al., Microrocket based viscometer. Ecs J. Solid State Sci. 4(10), S3020 (2015).

    [92] L. Shao, Z.J. Yang, D. Andrén, P. Johansson, M. Käll, Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12), 12542–12551 (2015).

    [93] S. Yuan, Q. Zheng, B.J. Yao, M.C. Wen, W.N. Zhang et al., Bio-compatible miniature viscosity sensor based on optical tweezers. Biomed. Opt. Express 13(3), 1152–1160 (2022).

    [94] A. Ghosh, D. Dasgupta, M. Pal, K.I. Morozov, A.M. Leshansky, A. Ghosh, Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28(25), 1705687 (2018).

    [95] A. Barbot, D. Decanini, G. Hwang, Local flow sensing on helical microrobots for semi-automatic motion adaptation. Int. J. Rob. Res. 39(4), 476–489 (2020).

    [96] H. Chen, Y.B. Wang, Y.Z. Liu, Q. Zou, J.F. Yu, Sensing of fluidic features using colloidal microswarms. ACS Nano 16(10), 16281–16291 (2022).

    [97] B. Jurado-Sánchez, A. Escarpa, J. Wang, Lighting up micromotors with quantum dots for smart chemical sensing. Chem. Commun. 51(74), 14088–14091 (2015).

    [98] K. Villa, C.L. Manzanares Palenzuela, Z. Sofer, S. Matějková, M. Pumera, Metal-free visible-light photoactivated C3N4 bubble-propelled tubular micromotors with inherent fluorescence and on/off capabilities. ACS Nano 12(12), 12482–12491 (2018).

    [99] Y. Yuan, C.Y. Gao, D.L. Wang, C. Zhou, B.H. Zhu et al., Janus-micromotor-based on–off luminescence sensor for active TNT detection. Beilstein J. Nanotech. 10(1), 1324–1331 (2019).

    [100] Z.H. Wang, G.C. Fang, Z.H. Gao, Y.K. Liao, C.Y. Gong et al., Autonomous microlasers for profiling extracellular vesicles from cancer spheroids. Nano Lett. 23(7), 2502–2510 (2023).

    [101] S. Campuzano, D. Kagan, J. Orozco, J. Wang, Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst 136(22), 4621–4630 (2011).

    [102] L.M. Liu, Y.G. Dong, Y.Y. Sun, M. Liu, Y.J. Su et al., Motion-based pH sensing using spindle-like micromotors. Nano Res. 9, 1310–1318 (2016).

    [103] S. Solé, A. Merkoçi, S. Alegret, Determination of toxic substances based on enzyme inhibition. part I. electrochemical biosensors for the determination of pesticides using batch procedures. Crit. Rev. Anal. Chem. 33(2), 89–126 (2003).

    [104] S.H. Yang, Q.Q. Wang, D.D. Jin, X.Z. Du, L. Zhang, Probing fast transformation of magnetic colloidal microswarms in complex fluids. ACS Nano 16(11), 19025–19037 (2022).

    [105] M.M. Sun, B. Hao, S.H. Yang, X. Wang, C. Majidi et al., Exploiting ferrofluidic wetting for miniature soft machines. Nat. Commun. 13, 7919 (2022).

    [106] J.F. Yu, L.D. Yang, X.Z. Du, H. Chen, T. Xu et al., Adaptive pattern and motion control of magnetic microrobotic swarms. IEEE Trans. Robot. 38(3), 1552–1570 (2021).

    [107] W.M. Jing, D.J. Cappelleri, A magnetic microrobot with in situ force sensing capabilities. Robotics 3(2), 106–119 (2014).

    [108] W.M. Jing, D.J. Cappelleri, Micro-force sensing mobile microrobots. Proc. SPIE 9494, 949405 (2015).

    [109] M. You, C.R. Chen, L.L. Xu, F.Z. Mou, J.G. Guan, Intelligent micro/nanomotors with taxis. Accounts. Chem. Res. 51(12), 3006–3014 (2018).

    [110] F.T. Ji, Y.L. Wu, M. Pumera, L. Zhang, Collective behaviors of active matter learning from natural taxes across scales. Adv. Mater. 35(8), 2203959 (2023).

    [111] M.N. Popescu, W.E. Uspal, C. Bechinger, P. Fischer, Chemotaxis of active Janus nanoparticles. Nano Lett. 18(9), 5345–5349 (2018).

    [112] J.X. Li, W.J. Liu, J.Y. Wang, I. Rozen, S. He et al., Nanoconfined atomic layer deposition of TiO2/Pt nanotubes: toward ultrasmall highly efficient catalytic nanorockets. Adv. Funct. Mater. 27(24), 1700598 (2017).

    [113] Y.Y. Hong, N.M. Blackman, N.D. Kopp, A. Sen, D. Velegol, Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99(17), 178103 (2007).

    [114] K.K. Dey, S. Bhandari, D. Bandyopadhyay, S. Basu, A. Chattopadhyay, The pH taxis of an intelligent catalytic microbot. Small 9(11), 1916–1920 (2013).

    [115] F.Z. Mou, Q. Xie, J.F. Liu, S.P. Che, L. Bahmane et al., ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl. Sci. Rev. 8(11), nqab066 (2021).

    [116] R.D. Vale, The molecular motor toolbox for intracellular transport. Cell 112(4), 467–480 (2003).

    [117] G.D. Bachand, H. Hess, B. Ratna, P. Satir, V. Vogel, “Smart dust” biosensors powered by biomolecular motors. Lab Chip 9(12), 1661–1666 (2009).

    [118] C.T. Lin, M.T. Kao, K. Kurabayashi, E. Meyhofer, Self-contained, biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip. Nano Lett. 8(4), 1041–1046 (2008).

    [119] T. Fischer, A. Agarwal, H. Hess, A smart dust biosensor powered by kinesin motors. Nat. Nanotechnol. 4(3), 162–166 (2009).

    [120] C. Schmidt, V. Vogel, Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab Chip 10(17), 2195–2198 (2010).

    [121] S. Hiyama, T. Inoue, T. Shima, Y. Moritani, T. Suda et al., Autonomous loading, transport, and unloading of specified cargoes by using DNA hybridization and biological motor-based motility. Small 4(4), 410–415 (2008).

    [122] D. Kagan, S. Campuzano, S. Balasubramanian, F. Kuralay, G.U. Flechsig et al., Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11(5), 2083–2087 (2011).

    [123] S. Balasubramanian, D. Kagan, C.M. Jack Hu, S. Campuzano, M.J. Lobo-Castañon et al., Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50(18), 4161–4164 (2011).

    [124] C.C. Mayorga-Martinez, J. Vyskočil, F. Novotný, P. Bednar, D. Ruzek et al., Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Appl. Mater. Today 26, 101337 (2022).

    [125] V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay et al., Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7(10), 9232–9240 (2013).

    [126] M. Urso, M. Ussia, F. Novotný, M. Pumera, Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573 (2022).

    [127] J. Wang, Can man-made nanomachines compete with nature biomotors? ACS Nano 3(1), 4–9 (2009).

    [128] M. Zarei, M. Zarei, Self-propelled micro/nanomotors for sensing and environmental remediation. Small 14(30), 1800912 (2018).

    [129] J. Simmchen, A. Baeza, D. Ruiz, M.J. Esplandiu, M. Vallet- Regí, Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8(13), 2053–2059 (2012).

    [130] J. Orozco, S. Campuzano, D. Kagan, M. Zhou, W. Gao et al., Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal. Chem. 83(20), 7962–7969 (2011).

    [131] J. Orozco, A. Cortés, G. Cheng, S. Sattayasamitsathit, W. Gao et al., Molecularly imprinted polymer-based catalytic micromotors for selective protein transport. J. Am. Chem. Soc. 135(14), 5336–5339 (2013).

    [132] E. Ma, K. Wang, H. Wang, An immunoassay based on nanomotor-assisted electrochemical response for the detection of immunoglobulin. Microchim. Acta 189(1), 47 (2022).

    [133] C.C. Mayorga-Martinez, M. Pumera, Self-propelled tags for protein detection. Adv. Funct. Mater. 30(6), 1906449 (2020).

    [134] Á. Molinero- Fernández, L. Arruza, M.Á. López, A. Escarpa, On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens. Bioelectron. 158, 112156 (2020).

    [135] C.Y. Liang, C. Zhan, F.Y. Zeng, D.D. Xu, Y. Wang et al., Bilayer tubular micromotors for simultaneous environmental monitoring and remediation. ACS Appl. Mater. Interfaces 10(41), 35099–35107 (2018).

    [136] V. Zieglschmid, C. Hollmann, O. Böcher, Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Cl. Lab. Sci. 42(2), 155–196 (2005).

    [137] F. Kuralay, S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg et al., Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J. Am. Chem. Soc. 134(37), 15217–15220 (2012).

    [138] H. Fang, G. Kaur, B.H. Wang, Progress in boronic acid-based fluorescent glucose sensors. J. Fluoresc. 14, 481–489 (2004).

    [139] S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46–57 (2006).

    [140] S. Campuzano, J. Orozco, D. Kagan, M. Guix, W. Gao et al., Bacterial isolation by lectin-modified microengines. Nano Lett. 12(1), 396–401 (2012).

    [141] O.A. Loaiza, P.J. Lamas-Ardisana, E. Jubete, E. Ochoteco, I. Loinaz et al., Nanostructured disposable impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal. Chem. 83(8), 2987–2995 (2011).

    [142] Y. Gogotsi, B. Anasori, The rise of MXenes. ACS Nano 13(8), 8491–8494 (2019).

    [143] K. Villa, F. Novotny, J. Zelenka, M.P. Browne, T. Ruml et al., Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13(7), 8135–8145 (2019).

    [144] S. Debata, N.A. Kherani, S.K. Panda, D.P. Singh, Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. J. Mater. Chem. B 10(40), 8235–8243 (2022).

    [145] Á. Molinero-Fernández, M.Á. López, A. Escarpa, Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion. Anal. Chem. 92(7), 5048–5054 (2020).

    [146] E. Morales-Narváez, M. Guix, M. Medina-Sánchez, C.C. Mayorga-Martinez, A. Merkoçi, Micromotor enhanced microarray technology for protein detection. Small 10(13), 2542–2548 (2014).

    [147] Q.R. Xiong, A.E. Lim, Y. Lim, Y.C. Lam, H.W. Duan, Dynamic magnetic nanomixers for improved microarray assays by eliminating diffusion limitation. Adv. Healthc. Mater. 8(6), 1801022 (2019).

    [148] Y. Zhang, D.A. Gregory, Y. Zhang, P.J. Smith, S.J. Ebbens et al., Reactive inkjet printing of functional silk stirrers for enhanced mixing and sensing. Small 15(1), 1804213 (2019).

    [149] S. Cinti, G. Valdés-Ramı́rez, W. Gao, J.X. Li, G. Palleschi et al., Microengine-assisted electrochemical measurements at printable sensor strips. Chem. Commun. 51(41), 8668–8671 (2015).

    [150] D. Rojas, B. Jurado-Sánchez, A. Escarpa, “Shoot and sense” Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Anal. Chem. 88(7), 4153–4160 (2016).

    [151] C. Lu, X.J. Liu, Y.F. Li, F. Yu, L.H. Tang et al., Multifunctional Janus hematite–silica nanoparticles: mimicking peroxidase-like activity and sensitive colorimetric detection of glucose. ACS Appl. Mater. Interfaces 7(28), 15395–15402 (2015).

    [152] M. Moreno-Guzman, A. Jodra, M.A. López, A. Escarpa, Self-propelled enzyme-based motors for smart mobile electrochemical and optical biosensing. Anal. Chem. 87(24), 12380–12386 (2015).

    [153] B.E.F. de Ávila, M. Zhao, S. Campuzano, F. Ricci, J.M. Pingarrón et al., Rapid micromotor-based naked-eye immunoassay. Talanta 167, 651–657 (2017).

    [154] R. María-Hormigos, B. Jurado- Sánchez, A. Escarpa, Self-propelled micromotors for naked-eye detection of phenylenediamines isomers. Anal. Chem. 90(16), 9830–9837 (2018).

    [155] M. Palacios-Corella, D. Rojas, M. Pumera, Photocatalytic Pt/Ag3VO4 micro-motors with inherent sensing capabilities for corroding environments. J. Colloid. Interf. Sci. 631, 125–134 (2023).

    [156] B. Guven, N. Basaran-Akgul, E. Temur, U. Tamer, İH. Boyacı, SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136(4), 740–748 (2011).

    [157] D. Han, Y.F. Fang, D.Y. Du, G.S. Huang, T. Qiu et al., Automatic molecular collection and detection by using fuel-powered microengines. Nanoscale 8(17), 9141–9145 (2016).

    [158] F. Novotnỳ, J. Plutnar, M. Pumera, Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced Raman scattering. Adv. Funct. Mater. 29(33), 1903041 (2019).

    [159] Y. Wang, C. Zhou, W. Wang, D.D. Xu, F.Y. Zeng et al., Photocatalytically powered matchlike nanomotor for light-guided active SERS sensing. Angew. Chem. Int. Ed. 130(40), 13294–13297 (2018).

    [160] T.L. Xu, Y. Luo, C.H. Liu, X.J. Zhang, S.T. Wang, Integrated ultrasonic aggregation-induced enrichment with Raman enhancement for ultrasensitive and rapid biosensing. Anal. Chem. 92(11), 7816–7821 (2020).

    [161] X.C. Fan, Q. Hao, M.Z. Li, X.Y. Zhang, X.Z. Yang et al., Hotspots on the move: active molecular enrichment by hierarchically structured micromotors for ultrasensitive SERS sensing. ACS Appl. Mater. Interfaces 12(25), 28783–28791 (2020).

    [162] Y. Wang, Y.H. Liu, Y. Li, D.D. Xu, X. Pan et al., Magnetic nanomotor-based maneuverable SERS probe. Research 2020, 7962024 (2020).

    [163] K. Xiong, J.W. Lin, Q. Chen, T.Y. Gao, L.L. Xu et al., An axis-asymmetric self-driven micromotor that can perform precession multiplying “on-the-fly” mass transfer. Matter 6(3), 907–924 (2023).

    [164] E.F. Petricoin III., J.L. Hackett, L.J. Lesko, R.K. Puri, S.I. Gutman et al., Medical applications of microarray technologies: a regulatory science perspective. Nat. Genet. 32(Suppl 4), 474–479 (2002).

    [165] T.J. Albert, M.N. Molla, D.M. Muzny, L. Nazareth, D. Wheeler et al., Direct selection of human genomic loci by microarray hybridization. Nat. Med. 4(11), 903–905 (2007).

    [166] F.Z. Mou, C.R. Chen, Q. Zhong, Y.X. Yin, H.R. Ma et al., Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly (N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 6(12), 9897–9903 (2014).

    [167] S.M. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997).

    [168] S.Y. Ding, J. Yi, J.F. Li, B. Ren, D.Y. Wu et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    [169] J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010).

    [170] E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance. Adv. Mater. 16(19), 1685–1706 (2004).

    [171] F. Risso, Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 25–48 (2018).

    [172] Q.Q. Wang, D.D. Jin, B. Wang, N. Xia, H. Ko et al., Reconfigurable magnetic microswarm for accelerating tPA-mediated thrombolysis under ultrasound imaging. IEEE/ASME Trans. Mechatron. 27(4), 2267–2277 (2022).

    [173] W.W. Gao, B.E.F. de Ávila, L.F. Zhang, J. Wang, Targeting and isolation of cancer cells using micro/nanomotors. Adv. Drug. Deliver. Rev. 125, 94–101 (2018).

    [174] M. Pal, N. Somalwar, A. Singh, R. Bhat, S.M. Eswarappa et al., Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30(22), 1800429 (2018).

    [175] L.L. Li, Z. Yu, J.F. Liu, M.Y. Yang, G.P. Shi et al., Swarming responsive photonic nanorobots for motile-targeting microen-vironmental mapping and mapping-guided photothermal treatment. Nano-Micro Lett. 15(1), 141 (2023).

    [176] Z. Yu, L.L. Li, F.Z. Mou, S.M. Yu, D. Zhang et al., Swarming magnetic photonic-crystal microrobots with on-the-fly visual pH detection and self-regulated drug delivery. InfoMat 5(10), e12464 (2023).

    [177] Z.M. Li, X.Y. Yi, J.K. Yang, L. Bian, Z.H. Yu et al., Designing artificial vibration modes of piezoelectric devices using programmable, 3D ordered structure with piezoceramic strain units. Adv. Mater. 34(2), 2107236 (2022).

    [178] K.S. Yuan, C. Cuntı́n-Abal, B. Jurado-Sánchez, A. Escarpa, Smartphone-based Janus micromotors strategy for motion-based detection of Glutathione. Anal. Chem. 93(49), 16385–16392 (2021).

    [179] Y.F. Zhang, F. Yang, W. Wei, Y.Y. Wang, S.S. Yang et al., Self-propelled Janus mesoporous micromotor for enhanced microRNA capture and amplified detection in complex biological samples. ACS Nano 16(4), 5587–5596 (2022).

    [180] L.J. Cai, D.Y. Xu, H.X. Chen, L. Wang, Y.J. Zhao, Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regen. 2, 109–115 (2021).

    [181] X. Wang, T.C. Wang, X. Chen, J.H. Law, G.Q. Shan et al., Microrobotic swarms for intracellular measurement with enhanced signal-to-noise ratio. ACS Nano 16(7), 10824–10839 (2022).

    [182] Y.B. Wang, H. Chen, J.H. Law, X.Z. Du, J.F. Yu, Ultrafast miniature robotic swimmers with upstream motility. Cyborg. Bionic. Syst. 4, 0015 (2023).

    [183] Q.Q. Wang, N. Xiang, J. Lang, B. Wang, D.D. Jin et al., Reconfigurable liquid-bodied miniature machines: Magnetic control and microrobotic applications. Adv. Intell. Syst. (2023).

    [184] Z.Y. Ren, R.J. Zhang, R.H. Soon, Z.M. Liu, W.Q. Hu et al., Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 7(27), eabh2022 (2021).

    [185] J.C. Zhang, Z.Y. Ren, W.Q Hu, R.H. Soon, I.C. Yasa et al., Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6(53) (2021).

    [186] W.Z. Yu, H.S. Lin, Y.L. Wang, X. He, N. Chen et al., A ferrobotic system for automated microfluidic logistics. Sci. Robot. 5(39), eaba4411 (2020).

    [187] M. García, J. Orozco, M. Guix, W. Gao, S. Sattayasamitsathit et al., Micromotor-based lab-on-chip immunoassays. Nanoscale 5(4), 1325–1331 (2013).

    [188] L. Restrepo-Pérez, L. Soler, C. Martínez-Cisneros, S. S´anchez, O.G. Schmidt, Biofunctionalized self-propelled micromotors as an alternative on-chip concen-trating system. Lab Chip 14(16), 2914–2917 (2014).

    [189] M.Y. Yang, X. Guo, F.Z. Mou, J.G. Guan, Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 123(7), 3944–3975 (2022).

    [190] Q.Q. Wang, X.Z. Du, D.D. Jin, L. Zhang, Real-time ultrasound doppler tracking and autonomous navigation of a miniature helical robot for accelerating thrombolysis in dynamic blood flow. ACS Nano 16(1), 604–616 (2022).

    [191] S. Jeon, S. Kim, S. Ha, S. Lee, E. Kim et al., Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4(30), aav4317 (2019).

    [192] D.F. Li, C. Liu, Y.Y. Yang, L.D. Wang, Y.J. Shen, Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci. Appl. 9, 84 (2020).

    [193] L.S. Xie, X. Pang, X.H. Yan, Q.X. Dai, H.R. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14(3), 2880–2893 (2020).

    [194] Z.G. Wu, L. Li, Y.R, Yang, P. Hu, Y. Li et al., A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4(32), eaax0613 (2019).

    [195] Q.Q. Wang, L.D. Yang, J.F. Yu, P.W.Y. Chiu, Y.P. Zheng et al., Real-time magnetic navigation of a rotating colloidal microswarm under ultrasound guidance. IEEE Trans. Biomed. Eng. 67(12), 3403–3412 (2020).

    [196] J. Llacer-Wintle, A. Rivas-Dapena, X.Z. Chen, E. Pellicer, B.J. Nelson et al., Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 33(42), 2102049 (2021).

    Qianqian Wang, Shihao Yang, Li Zhang. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform[J]. Nano-Micro Letters, 2024, 16(1): 040
    Download Citation