• Optoelectronics Letters
  • Vol. 18, Issue 1, 29 (2022)
Baharom Mohamad F.1, Azooz Salam M.2, A. Rosol Ahmad H.1, Yasin Moh3, and Harun Sulaiman Wadi1、3、*
Author Affiliations
  • 1Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
  • 2Department of Communication Engineering, Engineering Technical College, Al-Furat Al-Awsat Technical University, Najaf, Iraq
  • 3Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia1
  • show less
    DOI: 10.1007/s11801-022-1101-2 Cite this Article
    Mohamad F. Baharom, Salam M. Azooz, Ahmad H. A. Rosol, Moh Yasin, Sulaiman Wadi Harun. Vanadium pentoxide film for microsecond pulse generation in 1.5-μm region[J]. Optoelectronics Letters, 2022, 18(1): 29 Copy Citation Text show less
    References

    [1] NISHIZAWA N. Ultrashort pulse fiber lasers and their applications[J]. Japanese journal of applied physics, 2014, 53(9):090101.

    [2] CLOWES Y. Next generation light sources for biomedical applications:fibre lasers-compact, cost-effective, turnkey solutions[J]. Optik & photonik, 2008, 3(1):36-38.

    [3] JANECZEK M, WIDERSKI J, CZERSKI A, et al. Preliminary evaluation of thulium doped fiber laser in pig model of liver surgery[J]. BioMed research international, 2018, 2018:3275284.

    [4] CARVALHO L, PACQUENTIN W, TABARANT M, et al. Metal decontamination by high repetition rate nanosecond fiber laser: application to oxidized and Eu-contaminated stainless steel[J]. Applied surface science, 2020, 526:146654.

    [5] WANG H Y, XU W C, LUO A P, et al. Controllable dissipative soliton and Q-switched pulse emission in a normal dispersion fiber laser using SESAM and cavity loss tuning mechanism[J]. Optics communications, 2012, 285(7):1905-1907.

    [6] ISMAIL M A, AHMAD F, HARUN S W, et al. A Q-switched erbium-doped fiber laser with a graphene saturable absorber[J]. Laser physics letters, 2013, 10(2):025102.

    [7] ISMAIL E I, KADIR N A, LATIFF A A, et al. Black phosphorus crystal as a saturable absorber for both a Q-switched and mode-locked erbium-doped fiber laser[ J]. RSC advances, 2016, 6(76):72692-72697.

    [8] HISYAM M B, RUSDI M F, LATIFF A A, et al. Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber[J]. IEEE journal of selected topics in quantum electronics, 2016, 23(1):39-43.

    [9] AHMED M H, ALI N M, SALLEH Z S, et al. Q-switched erbium doped fiber laser based on single and multiple walled carbon nanotubes embedded in polyethylene oxide film as saturable absorber[J]. Optics & laser technology, 2015, 65:25-28.

    [10] HARIS H, HARUN S W, MUHAMMAD A R, et al. Passively Q-switched erbium-doped and ytterbiumdoped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber[J]. Optics & laser technology, 2017, 88:121-127.

    [11] CHEN B, ZHANG X, WU K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics express, 2015, 23(20):26723-26737.

    [12] AL-HITI A S, AL-MASOODI A H, AROF H, et al. Tungsten tri-oxide (WO3) film absorber for generating Q-switched pulses in erbium laser[J]. Journal of modern optics, 2020, 67(4):374-382.

    [13] MAO D, CUI X, HE Z, et al. Broadband polarization-insensitive saturable absorption of Fe2O3 nanoparticles[J]. Nanoscale, 2018, 10(45):21219-21224.

    [14] PANG L, SONG C, LV R, et al. High stable polarization-insensitive Er-doped Q-switched fiber laser with iron oxide nanoparticles as saturable absorber[J]. Optics & laser technology, 2019, 113:379-383.

    [15] ALANI I A, LOKMAN M Q, AHMED M H, et al. A few-picosecond and high-peak-power passively mode-locked erbium-doped fibre laser based on zinc oxide polyvinyl alcohol film saturable absorber[J]. Laser physics, 2018, 28(7):075105.

    [16] RUSDI M F, LATIFF A A, PAUL M C, et al. Titanium dioxide (TiO2) film as a new saturable absorber for generating mode-locked thulium-holmium doped all-fiber laser[J]. Optics & laser technology, 2017, 89: 16-20.

    [17] SADEQ S A, HARUN S W, AL-JANABI A H. Ultrashort pulse generation with an erbium-doped fiber laser ring cavity based on a copper oxide saturable absorber[J]. Applied optics, 2018, 57(18):5180-5185.

    [18] YANG X, FENG L, GAO T, et al. Defective molybdenum oxide function as saturable absorber for nanosecond pulse generater servicing Nd3+, Er3+, Tm3+ doped laser emission at 1.06, 1.64 and 1.94 μm[J]. Applied physics B, 2020, 126(11):1-9.

    [19] YAN B, LIAO L, YOU Y, et al. Single-crystalline V2O5 ultralong nanoribbon waveguides[J]. Advanced materials, 2009, 21(23):2436-2440.

    [20] MOLLI M, KADEMANE A B, PRADHAN P, et al. Study of nonlinear optical absorption properties of V2O5 nanoparticles in the femtosecond excitation regime[J]. Applied physics A, 2016, 122(8):1-4.

    [21] ZUIKAFLY S N F, KHALIFA A, AHMAD F, et al. Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime[J]. Results in physics, 2018, 9: 371-375.

    [22] LIU H H, CHOW K K, YAMASHITA S, et al. Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation[J]. Optics & laser technology, 2013, 45:713-716.

    [23] AHMED M H M, AL-MASOODI A H H, LATIFF A A, et al. Mechanically exfoliated 2D nanomaterials as saturable absorber for Q-switched erbium doped fiber laser[J]. Indian journal of physics, 2017, 91(10) : 1259-1264.

    [24] CHEN B, ZHANG X, GUO C, et al. Tungsten diselenide Q-switched erbium-doped fiber laser[J]. Optical engineering, 2016, 55(8):081306.

    [25] KWON S, LEE J, LEE J H. A Q-switched fiber laser using a Ti2AlN-based saturable absorber[J]. Laser physics, 2021, 31(2):025103.

    [26] LEE J, KWON S, LEE J H. Ti2AlC-based saturable absorber for passive Q-switching of a fiber laser[J]. Optical materials express, 2019, 9(5):2057-2066.

    Mohamad F. Baharom, Salam M. Azooz, Ahmad H. A. Rosol, Moh Yasin, Sulaiman Wadi Harun. Vanadium pentoxide film for microsecond pulse generation in 1.5-μm region[J]. Optoelectronics Letters, 2022, 18(1): 29
    Download Citation