• Photonics Research
  • Vol. 9, Issue 8, 1607 (2021)
Weichao Kong1、†, Jun Chen2、†, Zengxin Huang1, and Dengfeng Kuang1、*
Author Affiliations
  • 1Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, and Institute of Modern Optics, Nankai University, Tianjin 300350, China
  • 2College of Physics and Electronic Engineering, Taishan University, Taian 271000, China
  • show less
    DOI: 10.1364/PRJ.428425 Cite this Article Set citation alerts
    Weichao Kong, Jun Chen, Zengxin Huang, Dengfeng Kuang. Bidirectional cascaded deep neural networks with a pretrained autoencoder for dielectric metasurfaces[J]. Photonics Research, 2021, 9(8): 1607 Copy Citation Text show less
    References

    [1] S. Wang, P. C. Wu, V. Su, Y. Lai, M. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. Huang, J. Wang, R. Lin, C. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [2] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-227(2018).

    [3] M. Khorasaninejad, A. Y. Zhu, C. Roques-Carmes, W. T. Chen, J. Oh, I. Mishra, R. C. Devlin, F. Capasso. Polarization-insensitive metalenses at visible wavelength. Nano Lett., 16, 7229-7234(2016).

    [4] T. Cai, G. Wang, X. Fu, J. Liang, Y. Zhuang. High-efficiency metasurface with polarization-dependent transmission and reflection properties for both reflect array and transmit array. IEEE Trans. Antennas Propag., 66, 3219-3224(2018).

    [5] G. Lee, G. Yoon, S. Lee, H. Yun, J. Cho, K. Lee, H. Kim, J. R. B. Lee. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).

    [6] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [7] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [8] Z. Liu, D. Zhu, S. P. Rodrigues, K. Lee, W. Cai. Generative model for the inverse design of metasurfaces. Nano Lett., 18, 6570-6576(2018).

    [9] O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [10] Q. Ma, G. D. Bai, H. B. Jing, C. Yang, L. Li, T. J. Cui. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl., 8, 98(2019).

    [11] L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, S. Zhang. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 26, 5031-5036(2014).

    [12] D. Sarwinda, R. H. Paradisaa, A. Bustamam, P. Anggia. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Comput. Sci., 179, 423-431(2021).

    [13] J. Zhang, Y. Xie, Q. Wu, Y. Xia. Medical image classification using synergic deep learning. Med. Image. Anal., 54, 10-19(2019).

    [14] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez, J. Garcia-Rodriguez. A survey on deep learning techniques for image and video semantic segmentation. Appl. Soft Comput., 70, 41-45(2018).

    [15] R. Kemker, R. Luu, C. Kanan. Low-shot learning for the semantic segmentation of remote sensing imagery. IEEE Trans. Geosci. Remote Sens., 56, 6214-6223(2018).

    [16] F. Abdurahman, K. A. Fante, M. Aliy. Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models. BMC Bioinf., 22, 112(2021).

    [17] P. R. Wiecha, A. Arbouet, C. Girard, O. L. Muskens. Deep learning in nano-photonics: inverse design and beyond. Photon. Res., 9, 182-200(2021).

    [18] S. An, C. Fowler, B. Zheng, M. Y. Shalaginov, H. Tang, H. Li, L. Zhou, J. Ding, A. M. Agarwal, C. Rivero-Baleine, K. A. Richardson, T. Gu, J. Hu. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photon., 6, 3196-3207(2019).

    [19] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [20] J. Jiang, D. Sell, S. Hoyer, J. Hickey, J. Yang, J. A. Fan. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano, 13, 8872-8878(2019).

    [21] C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, H. Chen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [22] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv., 4, eaar4206(2018).

    [23] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski. Plasmonic nanostructure design and characterization via deep Learning. Light Sci. Appl., 7, 60(2018).

    [24] Z. Liu, L. Raju, D. Zhu, W. Cai. A hybrid strategy for the discovery and design of photonic structures. IEEE J. Emerging Sel. Top. Circuits Syst., 10, 126-135(2020).

    [25] M. V. Zhelyeznyakov, S. Brunton, A. Majumdar. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces. ACS Photon., 8, 481-488(2021).

    [26] P. Mehran, A. Purang, N. Robert. Adaptive augmentation of medical data using independently conditional variational auto-encoders. IEEE Trans. Med. Imaging, 38, 2807-2820(2019).

    [27] H. Xu. Generate faces using ladder variational autoencoder with maximum mean discrepancy (MMD). J. Intell. Inf. Syst., 10, 108-113(2018).

    [28] A. J. Ollanik, J. A. Smith, M. J. Belue, M. D. Escarra. High-efficiency all-dielectric Huygens metasurfaces from the ultraviolet to the infrared. ACS Photon., 5, 1351-1358(2018).

    [29] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P. T. Probst, J. Joseph, T. A. F. König. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl., 11, 13752-13760(2019).

    [30] T. Kawashima, H. Yoshikawa, S. Adachi. Optical properties of hexagonal GaN. J. Appl. Phys., 82, 3528-3535(1997).

    [31] S. Logothetidis, J. Petalas, M. Cardona, T. D. Moustakas. Optical properties and temperature dependence of the interband transitions of cubic and hexagonal GaN. Phys. Rev. B, 50, 18017-18029(1994).

    [32] D. T. Pierce, W. E. Spicer. Electronic structure of amorphous Si from photoemission and optical Studies. Phys. Rev. B, 5, 3017-3029(1972).

    [33] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [34] B. Wang, F. Dong, Q. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. Xiao, Q. Gong, Y. Li. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

    [35] P. Prahs, V. Radeck, C. Mayer, Y. Cvetkov, N. Cvetkova, H. Helbig, D. Märker. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graff. Arch. Clin. Exp., 256, 91-98(2018).

    [36] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller. Striving for simplicity: the all convolutional net. ICLR(2015).

    [37] C. Garbin, X. Zhu, O. Marques. Dropout vs. batch normalization: an empirical study of their impact to deep learning. Multimedia Tools Appl., 79, 12777-12815(2020).

    [38] H. B. McMahan. Follow-the-regularized-leader and mirror descent: equivalence theorems and L1 regularization. Proceedings of Machine Learning Research (PMLR), 15, 525-533(2011).

    [39] E. Orhan, X. Pitkow. Skip connections eliminations singularities. ICLR(2018).

    [40] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis., 128, 336-359(2020).

    Weichao Kong, Jun Chen, Zengxin Huang, Dengfeng Kuang. Bidirectional cascaded deep neural networks with a pretrained autoencoder for dielectric metasurfaces[J]. Photonics Research, 2021, 9(8): 1607
    Download Citation