[1] Y L GUO, H Y WANG, Q Y HU et al. Deep learning for 3D point clouds: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 4338-4364(2021).
[2] R Q CHARLES, S HAO, K C MO et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017).
[3] C R QI, L YI, H SU et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural Information Processing Systems, 30(2017).
[4] Y WANG, Y B SUN, Z W LIU et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 38, 1-12(2019).
[5] 5杨军, 党吉圣. 采用深度级联卷积神经网络的三维点云识别与分割[J]. 光学 精密工程, 2020, 28(5): 1187-1199. doi: 10.3788/OPE.20202805.1187YANGJ, DANGJ S. Recognition and segmentation of three-dimensional point cloud based on deep cascade convolutional neural network[J]. Opt. Precision Eng., 2020, 28(5): 1187-1199.(in Chinese). doi: 10.3788/OPE.20202805.1187
[6] 6杨军, 李博赞. 基于自注意力特征融合组卷积神经网络的三维点云语义分割[J]. 光学 精密工程, 2022, 30(7): 840-853. doi: 10.37188/OPE.20223007.0840YANGJ, LIB Z. Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network[J]. Opt. Precision Eng., 2022, 30(7): 840-853.(in Chinese). doi: 10.37188/OPE.20223007.0840
[7] 7陈俊英, 白童垚, 赵亮. 互注意力融合图像和点云数据的3D目标检测[J]. 光学 精密工程, 2021, 29(9): 2247-2254. doi: 10.37188/OPE.20212909.2247CHENJ Y, BAIT Y, ZHAOL. 3D object detection based on fusion of point cloud and image by mutual attention[J]. Opt. Precision Eng., 2021, 29(9): 2247-2254.(in Chinese). doi: 10.37188/OPE.20212909.2247
[8] H W DENG, T BIRDAL, S ILIC. PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors, 602-618(2018).
[9] R B GU, Q X WU, Y Q LI et al. Enhanced local and global learning for rotation-invariant point cloud representation. IEEE MultiMedia(1906).
[10] X H LIU, Z Z HAN, X WEN et al. L2G auto-encoder: understanding point clouds by local-to-global reconstruction with hierarchical self-attention, 989-997(2019).
[11] Z Z HAN, X Y WANG, Y S LIU et al. Multi-angle point cloud-VAE: unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction, 10441-10450(2019).
[12] S N XIE, J T GU, D M GUO et al. PointContrast: unsupervised pre-training for 3D point cloud understanding, 574-591(2020).
[13] Y M RAO, J W LU, J ZHOU. Global-local bidirectional reasoning for unsupervised representation learning of 3D point clouds, 5375-5384(2020).
[14] M AFHAM, I DISSANAYAKE, D DISSANAYAKE et al. CrossPoint: self-supervised cross-modal contrastive learning for 3D point cloud understanding, 9892-9902(2022).
[15] Y Q YANG, C FENG, Y R SHEN et al. FoldingNet: point cloud auto-encoder via deep grid deformation, 206-215(2018).
[16] Q M LI, Z C HAN, X M WU. Deeper insights into graph convolutional networks for semi-supervised learning. Proceedings of the AAAI Conference on Artificial Intelligence, 32(2018).
[17] Z R WU, S R SONG, A KHOSLA et al. 3D ShapeNets: a deep representation for volumetric shapes, 1912-1920(2015).
[18] M A UY, Q H PHAM, B S HUA et al. Revisiting point cloud classification: a new benchmark dataset and classification model on real-world data, 1588-1597(2019).