• Optics and Precision Engineering
  • Vol. 28, Issue 4, 759 (2020)
CHEN Ning1, ZHENG Jie-ji1, JIAO Xi-kai1, FAN Shi-xun1..., CHEN Hu-cheng2 and FAN Da-peng1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20202804.0759 Cite this Article
    CHEN Ning, ZHENG Jie-ji, JIAO Xi-kai, FAN Shi-xun, CHEN Hu-cheng, FAN Da-peng. Development of high-precision multivariable measurement and control system of ultrasonic motor[J]. Optics and Precision Engineering, 2020, 28(4): 759 Copy Citation Text show less
    References

    [1] XIAO Q J, LUO ZH H. Control system for an electromagnetic suspension and electrostatically drive rotating micro mirror[J]. Opt. Precision Eng., 2019, 27(9): 1935-1942.(in Chinese)

         XIAO Q J, LUO ZH H. Control system for an electromagnetic suspension and electrostatically drive rotating micro mirror[J]. Opt. Precision Eng., 2019, 27(9): 1935-1942.(in Chinese)

    [2] MA T B, ZHOU Q, DU F, et al.. Piezoelectric flexible manipulator vibration control based on machine vision and improved PID[J].Opt. Precision Eng, 2020, 28 (1): 141-150. (in Chinese)

         MA T B, ZHOU Q, DU F, et al.. Piezoelectric flexible manipulator vibration control based on machine vision and improved PID[J].Opt. Precision Eng, 2020, 28 (1): 141-150. (in Chinese)

    [3] CHEN H P, CHEN C, WANG J S, et al.. Performance analysis and experimental study of traveling wave type rotary ultrasonic motor in high-rotation environment[J]. Review of Scientific Instruments, 2018, 89(11): 115004.

         CHEN H P, CHEN C, WANG J S, et al.. Performance analysis and experimental study of traveling wave type rotary ultrasonic motor in high-rotation environment[J]. Review of Scientific Instruments, 2018, 89(11): 115004.

    [4] MA G Y. Experimental Researches and Performance Analysis of Ultrasonic Motor under High-Speed Rotating Conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)

         MA G Y. Experimental Researches and Performance Analysis of Ultrasonic Motor under High-Speed Rotating Conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)

    [5] ZHENG W, PENG J M, ZHU ZH H. Ultrasonic motor for precision NC machine tools [J]. World Manufacturing Engineering & Market, 2014(5): 91-94.(in Chinese)

         ZHENG W, PENG J M, ZHU ZH H. Ultrasonic motor for precision NC machine tools [J]. World Manufacturing Engineering & Market, 2014(5): 91-94.(in Chinese)

    [6] WANG SH, SU G. Design of three dimensional micro-displacement worktable based on the ultrasonic motor[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(11): 1-3.(in Chinese)

         WANG SH, SU G. Design of three dimensional micro-displacement worktable based on the ultrasonic motor[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(11): 1-3.(in Chinese)

    [7] FLUECKIGER M, BULLO M, CHAPUIS D, et al.. fMRI compatible haptic interface actuated with traveling wave ultrasonic motor[C]. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005., 2-6 Oct. 2005, Kowloon, Hong Kong, China, 2005: 2075-2082.

         FLUECKIGER M, BULLO M, CHAPUIS D, et al.. fMRI compatible haptic interface actuated with traveling wave ultrasonic motor[C]. Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, 2005., 2-6 Oct. 2005, Kowloon, Hong Kong, China, 2005: 2075-2082.

    [8] CHAPUIS D, GASSERT R, BURDET E, et al.. Hybrid ultrasonic motor and electrorheological clutch system for MR-compatible haptic rendering[C]. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, Beijing, China, 2006: 1553-1557.

         CHAPUIS D, GASSERT R, BURDET E, et al.. Hybrid ultrasonic motor and electrorheological clutch system for MR-compatible haptic rendering[C]. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006, Beijing, China, 2006: 1553-1557.

    [9] ZENG J S, LUO W H, ZHAO C S. Nonlinear vibration of travelling wave ultrasonic motor stator[J]. Opt. Precision Eng., 2008,16 (12): 2384-2390.

         ZENG J S, LUO W H, ZHAO C S. Nonlinear vibration of travelling wave ultrasonic motor stator[J]. Opt. Precision Eng., 2008,16 (12): 2384-2390.

    [10] HUANG W W, SONG L, SHI J ZH. Nonlinear Hammerstein model of ultrasonic motor based on differential evolution algorithm[J]. Micromotors, 2019, 52(5): 6-10.(in Chinese)

         HUANG W W, SONG L, SHI J ZH. Nonlinear Hammerstein model of ultrasonic motor based on differential evolution algorithm[J]. Micromotors, 2019, 52(5): 6-10.(in Chinese)

    [11] ZHENG W, HUANG W B, ZHOU J L, et al.. Design of ultrasonic motor testing system based on programmable logic controller[J]. Electric Machines & Control Application, 2018, 45(1): 123-126, 130.(in Chinese)

         ZHENG W, HUANG W B, ZHOU J L, et al.. Design of ultrasonic motor testing system based on programmable logic controller[J]. Electric Machines & Control Application, 2018, 45(1): 123-126, 130.(in Chinese)

    [12] ZHOU J L, CHEN CH, WANG J SH, et al.. Experimental study of transient response capability on traveling wave rotary ultrasonic motor[J]. China Mechanical Engineering, 2014, 25(10): 1369-1373, 1380.(in Chinese)

         ZHOU J L, CHEN CH, WANG J SH, et al.. Experimental study of transient response capability on traveling wave rotary ultrasonic motor[J]. China Mechanical Engineering, 2014, 25(10): 1369-1373, 1380.(in Chinese)

    [13] PAN S, WANG H N, SUN ZH J, et al.. Integrated control system for ultrasonic motor drive and fatigue life testing[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 956-960, 1036.(in Chinese)

         PAN S, WANG H N, SUN ZH J, et al.. Integrated control system for ultrasonic motor drive and fatigue life testing[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 956-960, 1036.(in Chinese)

    [14] LI J B, LIU S, QU J J, et al.. A contact model of traveling-wave ultrasonic motors considering preload and load torque effects[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 56(2): 151-164.

         LI J B, LIU S, QU J J, et al.. A contact model of traveling-wave ultrasonic motors considering preload and load torque effects[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 56(2): 151-164.

    [15] LI J B. Prediction Research of Remaining Useful Performance Life of Travelling Wave Ultrasonic Motors Based on Data Driven Method[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)

         LI J B. Prediction Research of Remaining Useful Performance Life of Travelling Wave Ultrasonic Motors Based on Data Driven Method[D]. Harbin: Harbin Institute of Technology, 2016.(in Chinese)

    [16] LI X N, ZHOU SH Q, YAO ZH Y. Design of USM temperature characteristic measuring system[J]. Machinery & Electronics, 2012, 30(10): 49-51.(in Chinese)

         LI X N, ZHOU SH Q, YAO ZH Y. Design of USM temperature characteristic measuring system[J]. Machinery & Electronics, 2012, 30(10): 49-51.(in Chinese)

    [17] GUO Y, ZHU H, LIU J, et al.. Study on optimal pre-pressure of rotating traveling wave ultrasonic motor[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 524-528.(in Chinese)

         GUO Y, ZHU H, LIU J, et al.. Study on optimal pre-pressure of rotating traveling wave ultrasonic motor[J]. Piezoelectrics & Acoustooptics, 2019, 41(4): 524-528.(in Chinese)

    [18] LU X L, HU J H, ZHAO C S. Analyses of the temperature field of traveling-wave rotary ultrasonic motors[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(12): 2708-2719.

         LU X L, HU J H, ZHAO C S. Analyses of the temperature field of traveling-wave rotary ultrasonic motors[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(12): 2708-2719.

    CHEN Ning, ZHENG Jie-ji, JIAO Xi-kai, FAN Shi-xun, CHEN Hu-cheng, FAN Da-peng. Development of high-precision multivariable measurement and control system of ultrasonic motor[J]. Optics and Precision Engineering, 2020, 28(4): 759
    Download Citation