[2] ARMSTRONG B,AMIN B. PID control in the presence of static friction: a comparison of algebraic and describing function analysis[J]. Automatica, 1996,32(5):679-692.
[3] ASMSTRONG H B, DUPONT P, CANUDAS DE W C. A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994,30(7):1083-1138.
[4] WANG W, ZHANG J T,CHAI T Y. A survey of advanced PID parameter tuning methods[J]. Acta Automatica Sinica, 2000,26(3):347-355. (in Chinese)
[5] XIAO Y L, ZHANG CH. A nonlinear PID controller design for position servo system[J]. Electric Automation, 2000(1): 20-22. (in Chinese)
[6] ZHONG Q CH, XIE J Y, LI H. PID controller with variable arguments[J]. Information and Control, 1999,28(4):273-277. (in Chinese)
[7] REN Y P,LI SH Y. Nonlinear PID controller and its parameter analysis[J]. Information and Control, 2005,34(4):486-489. (in Chinese)
[8] HAN J Q. Nonlinear PID controller[J]. Acta Autom Sinica, 1994,20(4):487-490. (in Chinese)
[9] SU Y X. A new class of nonlinear PID controller[J]. Control and Decision, 2003,18(1):126-128. (in Chinese)
[10] YANG Y K, LANG X Y. Dynamic compensation for friction moment in accurate test table[J]. Acta Automatica Sinica, 1983,9(4) :248-252. (in Chinese)
[11] ZHANG M R, MEI X R, ZHUANG X Y. Several methods of improving performance of hydraulic servo system at low speed[J]. Journal of Harbin Institute of Technology, 1998,30(4):66-69. (in Chinese)