[1] ZHANG Z, WANG X, LI X, et al. Review on composite solid electrolytes for solid-state lithium-ion batteries[J]. Mater Today Sustain, 2023, 21: 100316.
[2] CHEN R, LI Q, YU X, et al. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces[J]. Chem Rev, 2020, 120(14): 6820-6877.
[3] LI S, ZHANG S-Q, SHEN L, et al. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries[J]. Adv Sci, 2020, 7(5): 1903088.
[4] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790-8839.
[5] NGUYEN A G, PARK C J. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries[J]. J Membr Sci, 2023, 675: 121552.
[6] WANG G, LIU H, LIANG Y, et al. Research progress of composite solid electrolytes and their interface for lithium metal batteries[J]. J Chin Ceram Soc, 2021, 49(7): 1263-1277.
[7] LI X, LIANG J, YANG X, et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries[J]. Energy Environ Sci, 2020, 13(5): 1429-1461.
[8] WANG H, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Mater, 2020, 33: 188-215.
[9] DING P, LIN Z, GUO X, et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries[J]. Mater Today, 2021, 51: 449-474.
[10] SHENG L, XIE X, ARBIZZANI C, et al. A tailored ceramic composite separator with electron-rich groups for high-performance lithium metal anode[J]. J Membr Sci, 2022, 657: 120644.
[11] WOO M-H, DIDWAL P N, KIM H-J, et al. Reinforcing effect of single-wall carbon nanotubes on the LiNi0.6Co0.2Mn0.2O2 composite cathode for high-energy-density all-solid-state Li-ion batteries [J]. Appl Surf Sci, 2021, 568: 150934.
[12] KHOON L T, FUI M-L W, HASSAN N H, et al. In situ sol-gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery[J]. J Sol-Gel Sci Techn, 2019, 90(3): 665-675.
[13] TSENG Y C, RAMDHANI F I, HSIANG S H, et al. Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles[J]. J Membr Sci, 2022, 641: 119891.
[14] SUN H Y, TAKEDA Y, IMANISHI N, et al. Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes[J]. J Electrochem Soc, 2000, 147(7): 2462-2467.
[15] JEON Y M, KIM S, LEE M, et al. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation[J]. Adv Energy mater, 2020, 10(47): 2003114.
[16] XIE M, LI L, YUAN K, et al. Preparation and performance evaluation of organophilic nano-montmorillonite conducting polymer electrolyte for all-solid-state lithium ion batteries[J]. J Mater Sci Mater El, 2019, 30(3): 2030-2036.
[17] LI B, SU Q, YU L, et al. Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity[J]. Appl Surf Sci, 2021, 541(4): 148-164.
[18] SAIKIA D, KUMAR A. Ionic conduction studies in P(VDF-HFP)-LiAsF6-(PC+DEC)-fumed SiO2 composite gel polymer electrolyte system[J]. Phys Status Solidi A, 2005, 202(2): 309-315.
[19] ZHANG Y, ZHAO Y, GOSSELINK D, et al. Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery[J]. Ionics, 2015, 21(2): 381-385.
[20] JUDEZ X, ZHANG H, LI C, et al. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. J Phys Chem Lett, 2017, 8(15): 3473-3477.
[21] DISSANAYAKE M A K L, JAYATHILAKA P A R D, BOKALAWALA R S P, et al. Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3: Al2O3 composite polymer electrolyte[J]. J Power Sources, 2003, 119(12): 409-414.
[22] WESTON J E, STEELE B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes[J]. Solid State Ionics, 1982, 7(1): 75-79.
[23] UTPALLA P, SHARMA S K, PRAKASH J, et al. Free volume structure at interphase region of poly(ethylene oxide)-Al2O3 nanorods composites based solid polymer electrolyte and its direct correlation with li ion conductivity[J]. Solid State Ionics, 2022, 375: 115840.
[24] JIANG G, MAEDA S, YANG H, et al. All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes[J]. J Power Sources, 2005, 141(1): 143-148.
[25] ZHANG P, YANG L C, LI L L, et al. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires[J]. J Membr Sci, 2011, 379(1): 80-85.
[26] KIM K M, PARK N G, RYU K S, et al. Characterization of poly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles[J]. Polymer, 2002, 43(14): 3951-3957.
[27] CAO J, WANG L, HE X, et al. In situ prepared nano-crystalline TiO2 poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries[J]. J Mater Chem A, 2013, 1(19): 5955-5961.
[28] ZHAO E, GUO Y, ZHANG A, et al. Polydopamine coated TiO2 nanofiber fillers for polyethylene oxide hybrid electrolytes for efficient and durable all solid state lithium ion batteries[J]. Nanoscale, 2022, 14(3): 890-897.
[29] XIAO W, SONG J, HUANG L, et al. PVA-ZrO2 multilayer composite separator with enhanced electrolyte property and mechanical strength for lithium-ion batteries[J]. Ceram Int, 2020, 46(18, Part A): 29212-29221.
[30] XIONG H M, WANG Z D, XIE D P, et al. Stable polymer electrolytes based on polyether-grafted ZnO nanoparticles for all-solid-state lithium batteries[J]. J Mater Chem, 2006, 16(14): 1345-1349.
[31] REDDY M J, CHU P P, KUMAR J S, et al. Inhibited crystallization and its effect on conductivity in a nano-sized Fe oxide composite PEO solid electrolyte[J]. J Power Sources, 2006, 161(1): 535-540.
[32] SASIKUMAR M, RAJA M, KRISHNA R H, et al. Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF-HFP)/PVAC-based composite solid polymer electrolytes for lithium-ion batteries[J]. J Phys Chem C, 2018, 122(45): 25741-25752.
[33] APPETECCHI G B, PASSERINI S. Peo-carbon composite lithium polymer electrolyte[J]. Electrochim Acta, 2000, 45(13): 2139-2145.
[34] WANG A, XU H, LIU X, et al. High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials[J]. Compos Sci and Technol, 2017, 152(2): 68-75.
[35] MA C, DAI K, HOU H, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers[J]. Adv Sci, 2018, 5(5): 984-996.
[36] ZHU L, ZHU P, FANG Q, et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery[J]. Electrochim Acta, 2018, 292(6): 718-726.
[37] ZEGEYE T A, SU W-N, FENTA F W, et al. Ultrathin Li6.75La3·Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries[J]. ACS Appl Energy Mater, 2020, 3(12): 11713-11723.
[38] HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery[J]. Energ Fuel, 2020, 34(11): 15011-15018.
[39] WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Adv Funct Mater, 2019, 29(1): 1805301.
[40] FAN R, LIU C, HE K, et al. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers[J]. ACS Appl Mater Inter, 2020, 12(6): 7222-7231.
[41] WU M, LIU D, QU D, et al. 3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries[J]. ACS Appl Mater Inter, 2020, 12(47): 52652-52659.
[42] WANG T, LIU X, XIE L, et al. 3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6.4La3Zr1.4Ta0.6O12 reinforced poly(ethylene oxide)-based composite solid electrolyte for lithium batteries[J]. J Alloys Compd, 2023, 945: 168877.
[43] YU X, MANTHIRAM A. A long cycle life, all-solid-state lithium battery with a ceramic-polymer composite electrolyte[J]. ACS Appl Energy Mater, 2020, 3(3): 2916-2924.
[44] LIANG T, LIANG W H, CAO J H, et al. Enhanced performance of high energy density lithium metal battery with PVDF-HFP/LAGP composite separator[J]. ACS Appl Energy Mater, 2021, 4(3): 2578-2585.
[45] ZHAO Y, HUANG Z, CHEN S, et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J]. Solid State Ionics, 2016, 295(5): 65-71.
[46] HUANG Z H, LI J, LI L X, et al. Boosting lithium-ion transport capability of LAGP/PPO composite solid electrolyte via component regulation from 'ceramics-in-polymer' to 'polymer-in-ceramics'[J]. Ceram Int, 2022, 48(18): 25949-25957.
[47] GUO Q, HAN Y, WANG H, et al. New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries[J]. ACS Appl Mater Inter, 2017, 9(48): 41837-41844.
[48] LIANG X, HAN D, WANG Y, et al. Preparation and performance study of a PVDF-LATP ceramic composite polymer electrolyte membrane for solid-state batteries[J]. RSC Adv, 2018, 8(71): 40498-40504.
[49] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources, 2016, 301(3): 47-53.
[50] PAN K, ZHANG L, QIAN W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv Energy Mater, 2020, 32(17): 380-399.
[51] ZHANG Y, CHEN R, WANG S, et al. Free-standing sulfide/polymer composite solid electrolyte membranes with high conductance for all-solid-state lithium batteries[J]. Energy Storage Mater, 2020, 25: 145-153.
[52] SELF E C, HOOD Z D, BRAHMBHATT T, et al. Solvent-mediated synthesis of amorphous Li3PS4/polyethylene oxide composite solid electrolytes with high Li+ conductivity[J]. Chem Mater, 2020, 32(20): 8789-8797.
[53] YAO Z, ZHU K, LI X, et al. Double-layered multifunctional composite electrolytes for high-voltage solid-state lithium-metal batteries[J]. ACS Appl Mater Inter, 2021, 13(10): 11958-11967.
[54] ZHANG Q, YUE B, SHAO C, et al. Suppression of lithium dendrites in all-solid-state lithium batteries by using a janus-structured composite solid electrolyte[J]. Chem Eng J, 2022, 443: 136479.
[55] LI B, SU Q, YU L, et al. Ultrathin, flexible, and sandwiched structure composite polymer electrolyte membrane for solid-state lithium batteries[J]. J Membr Sci, 2021, 618: 118734.
[56] LI B, SU Q, LIU C, et al. Stable interface of a high-energy solid-state lithium metal battery via a sandwich composite polymer electrolyte[J]. J Power Sources, 2021, 496: 229835.
[57] FU J, LI Z, ZHOU X, et al. Ion transport in composite polymer electrolytes[J]. Mater Adv, 2022, 3(9): 3809-3819.
[58] WU N, CHIEN P-H, QIAN Y, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angew Chem Inter Edit, 2020, 59(10): 4131-4137.
[59] YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Appl Mater Inter, 2017, 9(26): 21773-21780.