• Acta Photonica Sinica
  • Vol. 50, Issue 3, 201 (2021)
Yujian ZHOU1, Xue YANG2, Jikai YANG1、2、*, Decai NIE2, Shurui YU2, Nan XIAO2, Zhipeng HOU1, Yiming ZHAO2, Xin WANG2, Guozheng WANG2, Kewei HUAN2, and Wenxin LIU2
Author Affiliations
  • 1Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an70065
  • 2College of Science, Changchun University of Science and Technology, Changchun1300
  • show less
    DOI: 10.3788/gzxb20215003.0331002 Cite this Article
    Yujian ZHOU, Xue YANG, Jikai YANG, Decai NIE, Shurui YU, Nan XIAO, Zhipeng HOU, Yiming ZHAO, Xin WANG, Guozheng WANG, Kewei HUAN, Wenxin LIU. Preparation and Photoelectrocatalytic Properties of WO3/Pt Composite Film[J]. Acta Photonica Sinica, 2021, 50(3): 201 Copy Citation Text show less
    References

    [1] Wanhong YAN, Yanwen ZHOU, Di YU. Temperature control system of semiconductor device and application for infrared gas detection. Acta Photonica Sinica, 48, 0312002(2019).

    [2] P J WELLMANN. Power electronic semiconductor materials for automotive and energy saving applications-SiC, GaN, Ga2O3, and diamond. Zeitschrift Für Anorganische Chemie, 643, 1312-1322(2017).

    [3] C C CHAN, C C CHANG. Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. Chemical Engineering Journal, 152, 492-497(2009).

    [4] W ZHAO, W H MA, C C CHEN. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-x B x under visible irradiation. Journal of the American Chemical Society, 126, 4782-4783(2004).

    [5] M M UDDIN, M A HASNAT, A J SAMED. Influence of TiO2 and ZnO photocatalysts on adsorption and degradation behaviour of Erythrosine. Dyes Pigments, 75, 207-212(2007).

    [6] M SLEIMAN, P CONCHON, C FERRONATO. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion. reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86, 159-165(2009).

    [7] M S ULMANN, J AUGUSTYNSKI. Aging effects in n-type semiconducting WO3 films. Journal of Applied Physics, 54, 6061-6064(1983).

    [8] G HODES, D CAHEN, J MANASSEN. Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature, 260, 312-313(1976).

    [9] B MARSEN, E L MILLERR, D PALUSELLI. Progress in sputtered tungsten trioxide for photoelectrode applications. International Journal of Hydrogen Energy, 32, 3110-3115(2007).

    [10] T G G MAFFEIS, D YUNG, L LLEPENNEC. STM and XPS characterisation of vacuum annealed nanocrystalline WO3 films. Surface Science, 601, 4953-4957(2007).

    [11] T JIN, P DIAO, D XU. High-aspect-ratio WO3 nanoneedles modified with nickel-borate for efficient photoelectrochemical water oxidation. Electrochimica Acta, 114, 271-277(2013).

    [12] R SOLARSKA, R JURCZAKOWSKI, J AUGUSTYNSKII. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Nanoscale, 4, 1553-1556(2012).

    [13] X G YANG, R LIU, Y M HE. Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research, 8, 56-81(2015).

    [14] J A SEABOLD, K S CHOI. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chemistry of Materials, 23, 1105-1112(2011).

    [15] K SAYAMA, H HAYASHI, T ARAI. Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Applied Catalysis B: Environmental, 94, 150-157(2010).

    [16] T JIN, P DIAO, Q Y WU. WO3 nanoneedles/α-Fe2O3/cobalt phosphate composite photoanode for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 148, 304-310(2014).

    [17] C JANAKY, K RAJESHWAR, T N R DE. Tungsten-based oxide semiconductors for solar hydrogen generation. Catalysis Today, 199, 53-64(2013).

    [18] D D QIN, C L TAO, S A FRIESEN. Dense layers of vertically oriented WO3 crystals as anodes for photoelectrochemical water oxidation. Chemical Communications, 48, 729-731(2012).

    [19] Y YAO, M SUN, Z ZHANG. In situ synthesis of MoO3/Ag/TiO2 nanotube arrays for enhancement of visible-light photoelectrochemical performance. International Journal of Hydrogen Energy, 44, 9348-9358(2019).

    [20] M M MOMENI, Y GHYEB. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. Journal of Molecular Catalysis A: Chemical, 417, 107-115(2016).

    [21] H LI, Z F BIAN, J ZHU. Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. Journal of the American Chemical Society, 129, 4538-4539(2005).

    [22] H TAKAMI, N NMURAKAMI. Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. Journal of the American Chemical Society, 130, 7780-7781(2008).

    [23] J YU, J XIONG, B CHENG. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 60, 211-221(1976).

    [24] L FU, W CAI, A WANG. Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Materials Letters, 142, 201-203(2015).

    [25] K W PARK, Y J SONG. Influence of Pt and Au nanophases on electrochromism of WO3 in nanostructure thin-film electrodes. Electrochemistry communications, 9, 2111-2115(2007).

    [26] Q XIANG, G F MENG, H B ZHAO. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. The Journal of Physical Chemistry C, 114, 2049-2055(2010).

    [27] M H KIM, H W CHOI, K H KIM. Thickness dependence of WO3-x thin films for electrochromic device application. Molecular Crystals and Liquid Crystals, 598, 54-61(2014).

    [28] P DONG, B YANG, C LIU. Highly enhanced photocatalytic activity of WO3 thin films loaded with Pt-Ag bimetallic alloy nanoparticles. RSC Advances, 7, 947-956(2017).

    [29] D V ESPOSITO, J G CHEN, R W BIRKMIRE. Hydrogen production from photo-driven electrolysis of biomass-derived oxygenates: A case study on methanol using Pt-modified WO3 thin film electrodes. International Journal of Hydrogen Energy, 36, 9632-9644(2011).

    [30] X CUI, L GUO, F CUI. Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO3 Composite as an Anode Catalyst for PEMFCs. Journal of Physical Chemistry C, 113, 4134-4138(2009).

    [31] S SHUANG, R LV, Z XIE. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays. Scientific Reports, 6, 26670(2016).

    [32] T D KANG, J G YOON. Optical characterization of surface plasmon resonance of Pt nanoparticles in TiO2-SiO2 nanocomposite films. Journal of Applied Physics, 122, 134302(2017).

    [33] S SUN, W WANG, S ZENG. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation. Journal of Hazardous Materials, 178, 427-433(2010).

    [34] B Y CHANG, S M PARK. Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 3, 207-229(2010).

    [35] A LASIA. Electrochemical impedance spectroscopy and its applications. MA, 143-248(2002).

    [36] M E ORAZEN, B TRIBOLLET. Electrochemical impedance spectroscopy(2017).

    [37] J HOMOLA, M PILIARIK. Surface plasmon resonance (SPR) sensors. Surface Plasmon Resonance Based Sensors, 45-67(2006).

    [38] R R KHARADE, S S MALI, S P PATIL. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films. Electrochimica Acta, 102, 358-368(2013).

    [39] D AINHA. Ideal graphene/silicon Schottky junction diodes. Nano Letters, 14, 4660-4664(2014).

    [40] P M KADAM, N L TARWAL, P S SHINDE. Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films. Journal of Alloys & Compounds, 509, 1279-1733(2011).

    [41] J P DOBSON. Absorption and Scattering of Light by Small Particles. Physics Bulletin, 35, 104-104(1984).

    [42] S ZENG, X YU. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensors and Actuators B: Chemical, 176, 1128-1133(2013).

    [43] H ZENG, S TERAZONO, T TANUMA. A novel catalyst for ammonia synthesis at ambient temperature and pressure: Visible light responsive photocatalyst using localized surface plasmon resonance. Catalysis Communications, 59, 40-44(2015).

    Yujian ZHOU, Xue YANG, Jikai YANG, Decai NIE, Shurui YU, Nan XIAO, Zhipeng HOU, Yiming ZHAO, Xin WANG, Guozheng WANG, Kewei HUAN, Wenxin LIU. Preparation and Photoelectrocatalytic Properties of WO3/Pt Composite Film[J]. Acta Photonica Sinica, 2021, 50(3): 201
    Download Citation