• Nano-Micro Letters
  • Vol. 16, Issue 1, 105 (2024)
Yanming Li1,2,†, Ming Deng1,2,4,†, Xuanyu Zhang1,2,5,†, Lei Qian1,2,3, and Chaoyu Xiang1,2,3,*
Author Affiliations
  • 1Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo 315300, People’s Republic of China
  • 2Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
  • 3Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, People’s Republic of China
  • 4Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211 Zhejiang, People’s Republic of China
  • 5University of Nottingham Ningbo China, Ningbo, 315100, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01321-8 Cite this Article
    Yanming Li, Ming Deng, Xuanyu Zhang, Lei Qian, Chaoyu Xiang. Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI3 Quantum Dot Light-Emitting Diodes[J]. Nano-Micro Letters, 2024, 16(1): 105 Copy Citation Text show less
    References

    [1] P. Fu, Q. Shan, Y. Shang, J. Song, H. Zeng et al., Perovskite nanocrystals: synthesis, properties and applications. Sci. Bull. 62(5), 369–380 (2017).

    [2] J. Shamsi, A.S. Urban, M. Imran, L. De Trizio, L. Manna, Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119(5), 3296–3348 (2019).

    [3] X.-K. Liu, W. Xu, S. Bai, Y. Jin, J. Wang et al., Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    [4] J.S. Kim, J.M. Heo, G.S. Park, S.J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    [5] Y.-K. Wang, K. Singh, J.-Y. Li, Y. Dong, X.-Q. Wang et al., In situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids. Adv. Mater. 34(21), e2200854 (2022).

    [6] Y. Wang, C. Duan, X. Zhang, J. Sun, X. Ling et al., Electroluminescent solar cells based on CsPbI3 perovskite quantum dots. Adv. Funct. Mater. 32(6), 2108615 (2022).

    [7] A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016).

    [8] W. Zhou, F. Sui, G. Zhong, G. Cheng, M. Pan et al., Lattice dynamics and thermal stability of cubic-phase CsPbI3 quantum dots. J. Phys. Chem. Lett. 9(17), 4915–4920 (2018).

    [9] J.-S. Yao, J. Ge, K.-H. Wang, G. Zhang, B.-S. Zhu et al., Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 141(5), 2069–2079 (2019).

    [10] L. Martínez-Sarti, S.H. Jo, Y.H. Kim, M. Sessolo, F. Palazon et al., Low-dimensional iodide perovskite nanocrystals enable efficient red emission. Nanoscale 11(27), 12793–12797 (2019).

    [11] Y.-F. Lan, J.-S. Yao, J.-N. Yang, Y.-H. Song, X.-C. Ru et al., Spectrally stable and efficient pure red CsPbI3 quantum dot light-emitting diodes enabled by sequential ligand post-treatment strategy. Nano Lett. 21(20), 8756–8763 (2021).

    [12] S. ten Brinck, F. Zaccaria, I. Infante, Defects in lead halide perovskite nanocrystals: analogies and (many) differences with the bulk. ACS Energy Lett. 4(11), 2739–2747 (2019).

    [13] Y. Dong, Y.-K. Wang, F. Yuan, A. Johnston, Y. Liu et al., Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    [14] J. Pan, L.N. Quan, Y. Zhao, W. Peng, B. Murali et al., Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28(39), 8718–8725 (2016).

    [15] G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang et al., Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs. Chem. Mater. 30(17), 6099–6107 (2018).

    [16] Y.-K. Wang, F. Yuan, Y. Dong, J.-Y. Li, A. Johnston et al., All-inorganic quantum-dot LEDs based on a phase-stabilized α-CsPbI3 perovskite. Angew. Chem. Int. Ed. 60(29), 16164–16170 (2021).

    [17] H. Zhao, H. Chen, S. Bai, C. Kuang, X. Luo et al., High-brightness perovskite light-emitting diodes based on FAPbBr3 nanocrystals with rationally designed aromatic ligands. ACS Energy Lett. 6(7), 2395–2403 (2021).

    [18] A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016).

    [19] J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio et al., Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138(23), 7240–7243 (2016).

    [20] F. Haydous, J.M. Gardner, U.B. Cappel, The impact of ligands on the synthesis and application of metal halide perovskite nanocrystals. J. Mater. Chem. A 9(41), 23419–23443 (2021).

    [21] S. Cho, J. Kim, S.M. Jeong, M.J. Ko, J.-S. Lee et al., High-voltage and green-emitting perovskite quantum dot solar cells via solvent miscibility-induced solid-state ligand exchange. Chem. Mater. 32(20), 8808–8818 (2020).

    [22] D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632–1653 (2022).

    [23] Y. Sun, H. Zhang, K. Zhu, W. Ye, L. She et al., Research on the influence of polar solvents on CsPbBr3 perovskite QDs. RSC Adv. 11(44), 27333–27337 (2021).

    [24] D. Liu, Z. Shao, C. Li, S. Pang, Y. Yan et al., Structural properties and stability of inorganic CsPbI3 perovskites. Small Struct. 2(3), 2000089 (2021).

    [25] S. Kajal, J. Kim, Y.S. Shin, A.N. Singh, C.W. Myung et al., Unfolding the influence of metal doping on properties of CsPbI3 perovskite. Small Methods 4(9), 2000296 (2020).

    [26] S.R. Smock, Y. Chen, A.J. Rossini, R.L. Brutchey, The surface chemistry and structure of colloidal lead halide perovskite nanocrystals. Acc. Chem. Res. 54(3), 707–718 (2021).

    [27] F. Krieg, S.T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen et al., Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3(3), 641–646 (2018).

    [28] J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens et al., Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10(2), 2071–2081 (2016).

    [29] Y. Dong, T. Qiao, D. Kim, D. Parobek, D. Rossi et al., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18(6), 3716–3722 (2018).

    [30] S. Akhil, V.G.V. Dutt, N. Mishra, Completely amine-free open-atmospheric synthesis of high-quality cesium lead bromide (CsPbBr3) perovskite nanocrystals. Chem. Eur. J. 26(71), 17195–17202 (2020).

    [31] L.C. Cass, M. Malicki, E.A. Weiss, The chemical environments of oleate species within samples of oleate-coated PbS quantum dots. Anal. Chem. 85(14), 6974–6979 (2013).

    [32] L. Wu, Q. Zhong, D. Yang, M. Chen, H. Hu et al., Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand. Langmuir 33(44), 12689–12696 (2017).

    [33] W. Zheng, Z. Li, C. Zhang, B. Wang, Q. Zhang et al., Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Res. 12, 1461–1465 (2019).

    Yanming Li, Ming Deng, Xuanyu Zhang, Lei Qian, Chaoyu Xiang. Proton-Prompted Ligand Exchange to Achieve High-Efficiency CsPbI3 Quantum Dot Light-Emitting Diodes[J]. Nano-Micro Letters, 2024, 16(1): 105
    Download Citation