• High Power Laser and Particle Beams
  • Vol. 33, Issue 11, 111006 (2021)
Yu Huang1, Pei Zhou1、2, Yigong Yang1, Nianqiang Li1、2、*, and Xiaofeng Li1、2、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 2Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
  • show less
    DOI: 10.11884/HPLPB202133.210323 Cite this Article
    Yu Huang, Pei Zhou, Yigong Yang, Nianqiang Li, Xiaofeng Li. Progress in research of dynamic properties and applications of spin-lasers[J]. High Power Laser and Particle Beams, 2021, 33(11): 111006 Copy Citation Text show less
    References

    [1] Gerhardt N C, Hofmann M R. Spin-controlled vertical-cavity surface-emitting lasers[J]. Advances in Optical Technologies, 2012, 268949(2012).

    [2] Adams M J, Alexandropoulos D. Parametric analysis of spin-polarized VCSELs[J]. IEEE Journal of Quantum Electronics, 45, 744-749(2009).

    [3] Holub M, Shin J, Saha D, et al. Electrical spin injection and threshold reduction in a semiconductor laser[J]. Physical Review Letters, 98, 146603(2007).

    [4] Alharthi S S, Hurtado A, Al Seyab R K, et al. Control of emitted light polarization in a 1310 nm dilute nitride spin-vertical cavity surface emitting laser subject to circularly polarized optical injection[J]. Applied Physics Letters, 105, 181106(2014).

    [5] Alharthi S S, Hurtado A, Korpijarvi V M, et al. Circular polarization switching and bistability in an optically injected 1300 nm spin-vertical cavity surface emitting laser[J]. Applied Physics Letters, 106, 021117(2015).

    [6] Basu D, Saha D, Bhattacharya P. Optical polarization modulation and gain anisotropy in an electrically injected spin laser[J]. Physical Review Letters, 102, 093904(2009).

    [7] Schires K, Al Seyab R, Hurtado A, et al. Optically-pumped dilute nitride spin-VCSEL[J]. Optics Express, 20, 3550-3555(2012).

    [8] Li Nianqiang, Alexandropoulos D, Susanto H, et al. Stability analysis of quantum-dot spin-VCSELs[J]. Electronics, 5, 83(2016).

    [9] Alharthi S S, Orchard J, Clarke E, et al. 1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser[J]. Applied Physics Letters, 107, 151109(2015).

    [10] Li M Y, Jähme H, Soldat H, et al. Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices[J]. Applied Physics Letters, 97, 191114(2010).

    [11] Adams M, Li Nianqiang, Cemlyn B, et al. Algebraic expressions for the polarisation response of spin-VCSELs[J]. Semiconductor Science and Technology, 33, 064002(2018).

    [12] Lee J, Oszwałdowski R, Gøthgen C, et al. Mapping between quantum dot and quantum well lasers: from conventional to spin lasers[J]. Physical Review B, 85, 045314(2012).

    [13] Žutić I, Fabian J, Sarma S D. Spintronics: fundamentals and applications[J]. Reviews of Modern Physics, 76, 323-410(2004).

    [14] Žutić I, Xu Gaofeng, Lindemann M, et al. Spin-lasers: spintronics beyond magnetoresistance[J]. Solid State Communications, 316-317, 113949(2020).

    [15] Soldat H, Li Mingyuan, Gerhardt N C, et al. Room temperature spin relaxation length in spin light-emitting diodes[J]. Applied Physics Letters, 99, 051102(2011).

    [16] Schires K, Al Seyab R, Hurtado A, et al. Instabilities in opticallypumped 1300nm dilute nitride spinVCSELs: experiment they[C]Proceedings of IEEE Photonics Conference 2012. Burlingame: IEEE, 2012: 870871.

    [17] Höpfner H, Lindemann M, Gerhardt N C, et al. Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 104, 022409(2014).

    [18] Lindemann M, Pusch T, Michalzik R, et al. Frequency tuning of polarization oscillations: toward high-speed spin-lasers[J]. Applied Physics Letters, 108, 042404(2016).

    [19] Torre M S, Susanto H, Li Nianqiang, et al. High frequency continuous birefringence-induced oscillations in spin-polarized vertical-cavity surface-emitting lasers[J]. Optics Letters, 42, 1628-1631(2017).

    [20] Yokota N, Takeuchi R, Yasaka H, et al. Lasing polarization characteristics in 1.55-μm spin-injected VCSELs[J]. IEEE Photonics Technology Letters, 29, 711-714(2017).

    [21] Yokota N, Nisaka K, Yasaka H, et al. Spin polarization modulation for high-speed vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 113, 171102(2018).

    [22] Lindemann M, Xu Gaofeng, Pusch T, et al. Ultrafast spin-lasers[J]. Nature, 568, 212-215(2019).

    [23] Frougier J, Baili G, Sagnes I, et al. Accurate measurement of the residual birefringence in VECSEL: Towards understanding of the polarization behavior under spin-polarized pumping[J]. Optics Express, 23, 9573-9588(2015).

    [24] Etou K, Hiura S, Park S, et al. Room-temperature spin-transport properties in an In0.5Ga0.5As quantum dot spin-polarized light-emitting diode[J]. Physical Review Applied, 16, 014034(2021).

    [25] Michalzik R. VCSELs: fundamentals, technology applications of verticalcavity surfaceemitting lasers[M]. Berlin Heidelberg: Springer, 2013: 166.

    [26] Sarma S D, Fabian J, Hu Xuedong, et al. Spin electronics and spin computation[J]. Solid State Communications, 119, 207-215(2001).

    [27] Sarma S D, Fabian J, Hu Xuedong, et al. Spintronics: electron spin coherence, entanglement, and transport[J]. Superlattices and Microstructures, 27, 289-295(2000).

    [28] Parkin S P S, Kaiser C, Panchula A, et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers[J]. Nature Materials, 3, 862-867(2004).

    [29] Alharthi S S, Al Seyab R K, Henning I D, et al. Simulated dynamics of optically pumped dilute nitride 1300 nm spin vertical-cavity surface-emitting lasers[J]. IET Optoelectronics, 8, 117-121(2014).

    [30] Alharthi S S. Nonlinear dynamics of solitary opticallyinjected spin verticalcavity lasers[D]. Essex: University of Essex, 2016: 82180.

    [31] Virte M, Panajotov K, Thienpont H, et al. Deterministic polarization chaos from a laser diode[J]. Nature Photonics, 7, 60-65(2013).

    [32] Raddo T R, Panajotov K, Borges B H V, et al. Strain induced polarization chaos in a solitary VCSEL[J]. Scientific Reports, 7, 14032(2017).

    [33] Alexandropoulos D, Al-Seyab R, Henning I, et al. Instabilities in quantum-dot spin-VCSELs[J]. Optics Letters, 37, 1700-1702(2012).

    [34] Li Nianqiang, Susanto H, Cemlyn B R, et al. Mapping bifurcation structure and parameter dependence in quantum dot spin-VCSELs[J]. Optics Express, 26, 14636-14649(2018).

    [35] Song Tingting, Xie Yiyuan, Ye Yichen, et al. Numerical analysis of nonlinear dynamics based on spin-VCSELs with optical feedback[J]. Photonics, 8, 10(2021).

    [36] Saha D, Basu D, Bhattacharya P. High-frequency dynamics of spin-polarized carriers and photons in a laser[J]. Physical Review B, 82, 205309(2010).

    [37] Al-Seyab R, Alexandropoulos D, Henning I D, et al. Instabilities in spin-polarized vertical-cavity surface-emitting lasers[J]. IEEE Photonics Journal, 3, 799-809(2011).

    [38] Gerhardt N C, Li M Y, Jähme H, et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 99, 151107(2011).

    [39] Li Nianqiang, Susanto H, Cemlyn B, et al. Stability and bifurcation analysis of spin-polarized vertical-cavity surface-emitting lasers[J]. Physical Review A, 96, 013840(2017).

    [40] Huang Yu, Zhou Pei, Li Nianqiang. Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization[J]. Optics Letters, 46, 3147-3150(2021).

    [41] Huang Yu, Zhou Pei, Li Nianqiang. High-speed secure key distribution based on chaos synchronization in optically pumped QD spin-polarized VCSELs[J]. Optics Express, 29, 19675-19689(2021).

    [42] Vaughan M, Susanto H, Henning I, et al. Dynamics of laterally-coupled pairs of spin-VCSELs[J]. IEEE Journal of Quantum Electronics, 56, 2400310(2020).

    [43] Lindemann M, Pusch T, Michalzik R, et al. Investigations on polarization oscillation amplitudes in spinVCSELs[C]Proceedings of SPIE 10122, VerticalCavity SurfaceEmitting Lasers XXI. San Francisco: SPIE, 2017: 101220O.

    [44] Susanto H, Schires K, Adams M J, et al. Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: asymptotic analysis, numerics, and experiments[J]. Physical Review A, 92, 063838(2015).

    [45] Martin-Regalado J, Prati F, Miguel M S, et al. Polarization properties of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 33, 765-783(1997).

    [46] Gahl A, Balle S, Miguel M S. Polarization dynamics of optically pumped VCSELs[J]. IEEE Journal of Quantum Electronics, 35, 342-351(1999).

    [47] Homayounfar A, Adams M J. Analysis of SFM dynamics in solitary and optically-injected VCSELs[J]. Optics Express, 15, 10504-10519(2007).

    [48] Lee J, Falls W, Oszwaldowski R, et al. Spin modulation in semiconductor lasers[J]. Applied Physics Letters, 97, 041116(2010).

    [49] Panajotov K, Nagler B, Verschaffelt G, et al. Impact of in-plane anisotropic strain on the polarization behavior of vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 77, 1590-1592(2000).

    [50] Pusch T, La Tona E, Lindemann M, et al. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence[J]. Applied Physics Letters, 110, 151106(2017).

    [51] Pusch T, Lindemann M, Gerhardt N C, et al. Vertical-cavity surface-emitting lasers with birefringence splitting above 250 GHz[J]. Electronics Letters, 51, 1600-1602(2015).

    [52] Pusch T, Debernardi P, Lindemann M, et al. Vertical-cavity surface-emitting laser with integrated surface grating for high birefringence splitting[J]. Electronics Letters, 55, 1055-1057(2019).

    [53] Zhu Ninghua, Shi Zhan, Zhang Zhike, et al. Directly modulated semiconductor lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-19(2018).

    [54] Zhou Daibing, Liang Song, Zhao Lingjuan, et al. High-speed directly modulated widely tunable two-section InGaAlAs DBR lasers[J]. Optics Express, 25, 2341-2346(2017).

    [55] Rosales R, Zorn M, Lott J A. 30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs[J]. IEEE Photonics Technology Letters, 29, 2107-2110(2017).

    [56] Xu Gaofeng, Cao J D, Labinac V, et al. Intensity equations for birefringent spin lasers[J]. Physical Review B, 103, 045306(2020).

    [57] Huang Yu, Zhou Pei, Torre M S, et al. Optically pumped spin-VCSELs: toward high-frequency polarization oscillations and modulation[J]. IEEE Journal of Quantum Electronics, 57, 2400212(2021).

    [58] Junior P E F, Xu Gaofeng, Lee J, et al. Toward high-frequency operation of spin lasers[J]. Physical Review B, 92, 075311(2015).

    [59] Drong M, Fördös T, Jaffrès H Y, et al. Spin-VCSELs with local optical anisotropies: toward terahertz polarization modulation[J]. Physical Review Applied, 15, 014041(2021).

    [60] Kini R N, Nontapot K, Khodaparast G A, et al. Time resolved measurements of spin and carrier dynamics in InAs films[J]. Journal of Applied Physics, 103, 064318(2008).

    [61] Blansett E L, Raymer M G, Khitrova G, et al. Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers[J]. Optics Express, 9, 312-318(2001).

    [62] Yokota N, Ikeda K, Yasaka H. Spin-injected birefringent VCSELs for analog radio-over-fiber systems[J]. IEEE Photonics Technology Letters, 33, 297-300(2021).

    [63] Guo Xingxing, Xiang Shuiying, Zhang Yahui, et al. High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 1500707(2020).

    [64] Vatin J, Rontani D, Sciamanna M. Enhanced performance of a reservoir computer using polarization dynamics in VCSELs[J]. Optics Letters, 43, 4497-4500(2018).

    [65] Bueno J, Brunner D, Soriano M C, et al. Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback[J]. Optics Express, 25, 2401-2412(2017).

    [66] Yang Yigong, Zhou Pei, Li Nianqiang. Timedelayed reservoir computing based on an optically pumped spin VCSEL f highspeed processing[J]. submitted to Noninear Dynamic.

    [67] Harkhoe K, Verschaffelt G, Van der Sande G. Neuro-inspired computing with spin-VCSELs[J]. Applied Sciences, 11, 4232(2021).

    [68] Wang Cheng, Raghunathan R, Schires K, et al. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation[J]. Optics Letters, 41, 1153-1156(2016).

    [69] Chan S C, Hwang S K, Liu Jiaming. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[J]. Optics Express, 15, 14921-14935(2007).

    [70] Lin Xiaodong, Xia Guangqiong, Yang Tilian, et al. Photonic microwave generation based on an OISL by subharmonic modulation from an OEO[J]. IEEE Photonics Technology Letters, 31, 1846-1849(2019).

    [71] Li Nianqiang, Susanto H, Cemlyn B, et al. Secure communication systems based on chaos in optically pumped spin-VCSELs[J]. Optics Letters, 42, 3494-3497(2017).

    [72] Huang Yu, Zhou Pei, Li Nianqiang. Chaos synchronization in optically pumped quantumdot spinVCSELs[C]Proceedings of SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology Applications. Kunming: SPIE, 2021: 117636I.

    [73] Jiang Ning, Xue Chenpeng, Liu Ding, et al. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection[J]. Optics Letters, 42, 1055-1058(2017).

    [74] Yokota N, Yasaka H. Spin laser local oscillators for homodyne detection in coherent optical communications[J]. Micromachines, 12, 573(2021).

    Yu Huang, Pei Zhou, Yigong Yang, Nianqiang Li, Xiaofeng Li. Progress in research of dynamic properties and applications of spin-lasers[J]. High Power Laser and Particle Beams, 2021, 33(11): 111006
    Download Citation