• Optics and Precision Engineering
  • Vol. 30, Issue 23, 3004 (2022)
Leqiang YANG, Jianli WANG, Kainan YAO, Hongzhuang LI..., Lu CHEN and Meng SHAO*|Show fewer author(s)
Author Affiliations
  • Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033, China
  • show less
    DOI: 10.37188/OPE.20223023.3004 Cite this Article
    Leqiang YANG, Jianli WANG, Kainan YAO, Hongzhuang LI, Lu CHEN, Meng SHAO. Design and dynamic performance of wavefront processor for 961 element adaptive optics system based on GPU[J]. Optics and Precision Engineering, 2022, 30(23): 3004 Copy Citation Text show less
    References

    [1] 1王建立,陈涛,张景旭,等.地基高分辨率光电成像望远镜总体需求及关键技术分析[J].光学 精密工程,2008,16(5): 2-16.WANGJ L, CHENT, ZHANGJ X, et al . General requirements and key technologies for the ground-based high resolution EO imaging telescope[J]. Opt. Precision Eng., 2008, 16(5): 2-16 . (in Chinese)

    [2] 2林旭东, 刘欣悦, 王建立, 等. 961单元变形镜研制及性能测试[J]. 光学学报, 2013, 33(6): 9-14. doi: 10.3788/AOS201333.0601001LINX D, LIUX Y, WANGJ L, et al. Development and performance test of the 961-element deformable mirror[J]. Acta Optica Sinica, 2013, 33(6): 9-14.(in Chinese). doi: 10.3788/AOS201333.0601001

    [3] J MOCCI, F BUSATO, N BOMBIERI et al. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 37, 1548-1556(2020).

    [4] 4贾建禄, 赵金宇, 王建立, 等. 基于FPGA的自适应光学波前处理算法[J]. 光学 精密工程, 2017, 25(10): 2580-2583. doi: 10.3788/OPE.20172510.2580JIAJ L, ZHAOJ Y, WANGJ L, et al. Adaptive optical wave-front processing algorithm based on FPGA[J]. Optics and Precision Engineering, 2017, 25(10): 2580-2583.(in Chinese). doi: 10.3788/OPE.20172510.2580

    [5] 5贾建禄, 王建立, 赵金宇, 等. 基于FPGA的自适应光学系统波前处理机[J]. 光学 精密工程, 2011, 19(8): 1716-1722.JIAJ L, WANGJ L, ZHAOJ Y, et al. Adaptive optical wave-front processor based on FPGA[J]. Optics and Precision Engineering, 2011, 19(8): 1716-1722.(in Chinese)

    [6] 6陈善球. 自适应光学高性能实时计算技术研究[D]. 成都: 电子科技大学, 2016.CHENSH Q. Research on High Performance and Real-time Computing for Adaptive Optics[D]. Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese)

    [7] 7王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程, 2018, 26(5): 1007-1013.WANGJ L, DONGY L, YAOK N, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Opt. Precision Eng., 2018, 26(5): 1007-1013.(in Chinese)

    [8] F P KONG, M C POLO, A LAMBERT. Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing. Applied Optics, 56, 6466-6475(2017).

    [9] E A BENDEK, M HART, K B POWELL et al. Status of the, 7736, 268-279(6).

    [10] T S DUNCAN, J K VOAS, R J EAGER et al. Low-latency adaptive optical system processing electronics. Waikoloa, 4839, 923-934(2003).

    [11] H ZHANG, Z LJUSIC, G HOVEY et al. A high-performance FPGA platform for adaptive optics real-time control, 8447, 906-915(2012).

    [12] 12王春鸿. 61单元自适应光学系统实时波前处理技术研究[D]. 成都: 电子科技大学, 2008. doi: 10.7666/d.D308245WANGCH H. Research on Real-time Wavefront Processing Technology of 61-unit Adaptive Optical System[D]. Chengdu: University of Electronic Science and Technology of China, 2008. (in Chinese). doi: 10.7666/d.D308245

    [13] C H RAO, L ZHU, X J RAO et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory. The Astrophysical Journal Letters, 833, 210(2016).

    [14] L KONG, L ZHU, L Q ZHANG et al. Real-time controller based on FPGA and DSP for solar ground layer adaptive optics prototype system at 1-m NVST. IEEE Photonics Journal, 9, 1-11(2017).

    [15] D Y LI et al. Wavefront processor for liquid crystal adaptive optics system based on Graphics Processing Unit. Optics Communications, 316, 211-216(2014).

    [16] J BERNARD, D PERRET, A SEVIN et al. Design and performance of a scalable GPU-based AO RTC prototype, 10703, 1171-1181(2018).

    [17] D GRATADOUR, T MORRIS, R BIASI et al. Prototyping AO RTC using emerging high performance computing technologies with the Green Flash project, 10703, 404-418(2018).

    [18] A G BASDEN, R M MYERS. The Durham adaptive optics real-time controller: capability and Extremely Large Telescope suitability. Monthly Notices of the Royal Astronomical Society, 424, 1483-1494(2012).

    [19] U BITENC, A BASDEN, N DIPPER et al. Durham AO real-time controller (DARC) running on graphics processing units (GPUs), 1(2015).

    [20] D PERRET, M LAIN, J BERNARD et al. Bridging FPGA and GPU technologies for AO real-time control, 9909, 1364-1374(2016).

    [21] D R JENKINS, A G BASDEN, R M MYERS et al. An ELT scale MCAO real-time control prototype using Xeon Phi technologies, 10703, 419-425(2018).

    [22] F FERREIRA, D GRATADOUR, A SEVIN et al. COMPASS: an efficient GPU-based simulation software for adaptive optics systems, 180-187(2018).

    [23] 23李新阳, 姜文汉. 自适应光学控制系统的有效带宽分析[J]. 光学学报, 1997, 17(12): 1697-1702. doi: 10.3321/j.issn:0253-2239.1997.12.020LIX Y, JIANGW H. Effective bandwidth analysis of adaptive optics control system[J]. Acta Optica Sinica, 1997, 17(12): 1697-1702.(in Chinese). doi: 10.3321/j.issn:0253-2239.1997.12.020

    Leqiang YANG, Jianli WANG, Kainan YAO, Hongzhuang LI, Lu CHEN, Meng SHAO. Design and dynamic performance of wavefront processor for 961 element adaptive optics system based on GPU[J]. Optics and Precision Engineering, 2022, 30(23): 3004
    Download Citation