[1] 1王建立,陈涛,张景旭,等.地基高分辨率光电成像望远镜总体需求及关键技术分析[J].光学 精密工程,2008,16(5): 2-16.WANGJ L, CHENT, ZHANGJ X, et al . General requirements and key technologies for the ground-based high resolution EO imaging telescope[J]. Opt. Precision Eng., 2008, 16(5): 2-16 . (in Chinese)
[2] 2林旭东, 刘欣悦, 王建立, 等. 961单元变形镜研制及性能测试[J]. 光学学报, 2013, 33(6): 9-14. doi: 10.3788/AOS201333.0601001LINX D, LIUX Y, WANGJ L, et al. Development and performance test of the 961-element deformable mirror[J]. Acta Optica Sinica, 2013, 33(6): 9-14.(in Chinese). doi: 10.3788/AOS201333.0601001
[3] J MOCCI, F BUSATO, N BOMBIERI et al. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 37, 1548-1556(2020).
[4] 4贾建禄, 赵金宇, 王建立, 等. 基于FPGA的自适应光学波前处理算法[J]. 光学 精密工程, 2017, 25(10): 2580-2583. doi: 10.3788/OPE.20172510.2580JIAJ L, ZHAOJ Y, WANGJ L, et al. Adaptive optical wave-front processing algorithm based on FPGA[J]. Optics and Precision Engineering, 2017, 25(10): 2580-2583.(in Chinese). doi: 10.3788/OPE.20172510.2580
[5] 5贾建禄, 王建立, 赵金宇, 等. 基于FPGA的自适应光学系统波前处理机[J]. 光学 精密工程, 2011, 19(8): 1716-1722.JIAJ L, WANGJ L, ZHAOJ Y, et al. Adaptive optical wave-front processor based on FPGA[J]. Optics and Precision Engineering, 2011, 19(8): 1716-1722.(in Chinese)
[6] 6陈善球. 自适应光学高性能实时计算技术研究[D]. 成都: 电子科技大学, 2016.CHENSH Q. Research on High Performance and Real-time Computing for Adaptive Optics[D]. Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese)
[7] 7王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程, 2018, 26(5): 1007-1013.WANGJ L, DONGY L, YAOK N, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Opt. Precision Eng., 2018, 26(5): 1007-1013.(in Chinese)
[8] F P KONG, M C POLO, A LAMBERT. Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing. Applied Optics, 56, 6466-6475(2017).
[9] E A BENDEK, M HART, K B POWELL et al. Status of the, 7736, 268-279(6).
[10] T S DUNCAN, J K VOAS, R J EAGER et al. Low-latency adaptive optical system processing electronics. Waikoloa, 4839, 923-934(2003).
[11] H ZHANG, Z LJUSIC, G HOVEY et al. A high-performance FPGA platform for adaptive optics real-time control, 8447, 906-915(2012).
[12] 12王春鸿. 61单元自适应光学系统实时波前处理技术研究[D]. 成都: 电子科技大学, 2008. doi: 10.7666/d.D308245WANGCH H. Research on Real-time Wavefront Processing Technology of 61-unit Adaptive Optical System[D]. Chengdu: University of Electronic Science and Technology of China, 2008. (in Chinese). doi: 10.7666/d.D308245
[13] C H RAO, L ZHU, X J RAO et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory. The Astrophysical Journal Letters, 833, 210(2016).
[14] L KONG, L ZHU, L Q ZHANG et al. Real-time controller based on FPGA and DSP for solar ground layer adaptive optics prototype system at 1-m NVST. IEEE Photonics Journal, 9, 1-11(2017).
[15] D Y LI et al. Wavefront processor for liquid crystal adaptive optics system based on Graphics Processing Unit. Optics Communications, 316, 211-216(2014).
[16] J BERNARD, D PERRET, A SEVIN et al. Design and performance of a scalable GPU-based AO RTC prototype, 10703, 1171-1181(2018).
[17] D GRATADOUR, T MORRIS, R BIASI et al. Prototyping AO RTC using emerging high performance computing technologies with the Green Flash project, 10703, 404-418(2018).
[18] A G BASDEN, R M MYERS. The Durham adaptive optics real-time controller: capability and Extremely Large Telescope suitability. Monthly Notices of the Royal Astronomical Society, 424, 1483-1494(2012).
[19] U BITENC, A BASDEN, N DIPPER et al. Durham AO real-time controller (DARC) running on graphics processing units (GPUs), 1(2015).
[20] D PERRET, M LAIN, J BERNARD et al. Bridging FPGA and GPU technologies for AO real-time control, 9909, 1364-1374(2016).
[21] D R JENKINS, A G BASDEN, R M MYERS et al. An ELT scale MCAO real-time control prototype using Xeon Phi technologies, 10703, 419-425(2018).
[22] F FERREIRA, D GRATADOUR, A SEVIN et al. COMPASS: an efficient GPU-based simulation software for adaptive optics systems, 180-187(2018).
[23] 23李新阳, 姜文汉. 自适应光学控制系统的有效带宽分析[J]. 光学学报, 1997, 17(12): 1697-1702. doi: 10.3321/j.issn:0253-2239.1997.12.020LIX Y, JIANGW H. Effective bandwidth analysis of adaptive optics control system[J]. Acta Optica Sinica, 1997, 17(12): 1697-1702.(in Chinese). doi: 10.3321/j.issn:0253-2239.1997.12.020