• Nano-Micro Letters
  • Vol. 17, Issue 1, 005 (2025)
Tingsong Hu, Wenyi Lian, Kang Hu, Qiuju Li..., Xueliang Cui, Tengyu Yao and Laifa Shen*|Show fewer author(s)
Author Affiliations
  • Jiangsu Key Laboratory of Materials and Technologies for Energy Storage, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01506-1 Cite this Article
    Tingsong Hu, Wenyi Lian, Kang Hu, Qiuju Li, Xueliang Cui, Tengyu Yao, Laifa Shen. Photo-Energized MoS2/CNT Cathode for High-Performance Li–CO2 Batteries in a Wide-Temperature Range[J]. Nano-Micro Letters, 2025, 17(1): 005 Copy Citation Text show less
    References

    [1] C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    [2] Z. Zhuo, K. Dai, R. Qiao, R. Wang, J. Wu et al., Cycling mechanism of Li2MnO3: Li–CO2 batteries and commonality on oxygen redox in cathode materials. Joule 5, 975–997 (2021).

    [3] H.-D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim et al., Rational design of redox mediators for advanced Li–O2 batteries. Nat. Energy 1, 16066 (2016).

    [4] S.-M. Xu, Z.-C. Ren, X. Liu, X. Liang, K.-X. Wang et al., Carbonate decomposition: low-overpotential Li–CO2 battery based on interlayer-confined monodisperse catalyst. Energy Storage Mater. 15, 291–298 (2018).

    [5] B. Liu, Y. Sun, L. Liu, J. Chen, B. Yang et al., Recent advances in understanding Li–CO2 electrochemistry. Energy Environ. Sci. 12, 887–922 (2019).

    [6] Y. Xu, X. Li, Y. Li, Y. Wang, L. Song et al., Reconfiguration of the charge density difference of nitrogen-doped graphene by covalently bonded Cu-N4 active sites boosting thermodynamics and performance in aprotic Li-CO2 battery. Energy Storage Mater. 68, 103354 (2024).

    [7] X. Chen, Y. Zhang, C. Chen, H. Li, Y. Lin et al., Atomically dispersed ruthenium catalysts with open hollow structure for lithium–oxygen batteries. Nano-Micro Lett. 16, 27 (2023).

    [8] Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13, 203 (2021).

    [9] C. Li, Y. Ji, Y. Wang, C. Liu, Z. Chen et al., Applications of metal-organic frameworks and their derivatives in electrochemical CO2 reduction. Nano-Micro Lett. 15, 113 (2023).

    [10] L. Qie, Y. Lin, J.W. Connell, J. Xu, L. Dai, Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 56, 6970–6974 (2017).

    [11] C. Wang, Q. Zhang, X. Zhang, X.-G. Wang, Z. Xie et al., Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li–CO2 batteries. Small 14, e1800641 (2018).

    [12] X. Mu, H. Pan, P. He, H. Zhou, Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, 1903790 (2020).

    [13] Y. Li, J. Zhou, T. Zhang, T. Wang, X. Li et al., Highly surface-wrinkled and N-doped CNTs anchored on metal wire: a novel fiber-shaped cathode toward high-performance flexible Li–CO2 batteries. Adv. Funct. Mater. 29, 1808117 (2019).

    [14] P.-F. Zhang, J.-Y. Zhang, T. Sheng, Y.-Q. Lu, Z.-W. Yin et al., Synergetic effect of Ru and NiO in the electrocatalytic decomposition of Li2CO3 to enhance the performance of a Li–CO2/O2 battery. ACS Catal. 10, 1640–1651 (2020).

    [15] J. Sun, Y. Lu, H. Yang, M. Han, L. Shao et al., Rechargeable Na–CO2 batteries starting from cathode of Na2CO3 and carbon nanotubes. Research 2018, 6914626 (2018).

    [16] W. Ma, S. Lu, X. Lei, X. Liu, Y. Ding, Porous Mn2O3 cathode for highly durable Li–CO2 batteries. J. Mater. Chem. A 6, 20829–20835 (2018).

    [17] Z. Lian, Y. Lu, C. Wang, X. Zhu, S. Ma et al., Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li–CO2 batteries. Adv. Sci. 8, e2102550 (2021).

    [18] L. Fei, Y. Yin, M. Yang, S. Zhang, C. Wang, Wearable solar energy management based on visible solar thermal energy storage for full solar spectrum utilization. Energy Storage Mater. 42, 636–644 (2021).

    [19] W. Feng, L. Zhu, X. Dong, Y. Wang, Y. Xia et al., Enhanced moisture stability of lithium-rich antiperovskites for sustainable all-solid-state lithium batteries. Adv. Mater. 35, e2210365 (2023).

    [20] T. Fang, H. Huang, J. Feng, Y. Hu, Q. Qian et al., Reactive inorganic vapor deposition of perovskite oxynitride films for solar energy conversion. Research 2019, 9282674 (2019).

    [21] Q. Guo, J. Wu, Y. Yang, X. Liu, Z. Lan et al., High-performance and hysteresis-free perovskite solar cells based on rare-earth-doped SnO2 mesoporous scaffold. Research 2019, 4049793 (2019).

    [22] J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 1700194 (2017).

    [23] F. Podjaski, J. Kröger, B.V. Lotsch, Toward an aqueous solar battery: direct electrochemical storage of solar energy in carbon nitrides. Adv. Mater. 30, 1705477 (2018).

    [24] L. Xu, Y. Ren, Y. Fu, M. Liu, F. Zhu et al., Strong photo-thermal coupling effect boosts CO2 reduction into CH4 in a concentrated solar reactor. Chem. Eng. J. 468, 143831 (2023).

    [25] S. Xu, C. Chen, Y. Kuang, J. Song, W. Gan et al., Flexible lithium–CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 11, 3231–3237 (2018).

    [26] K. Baek, W.C. Jeon, S. Woo, J.C. Kim, J.G. Lee et al., Synergistic effect of quinary molten salts and ruthenium catalyst for high-power-density lithium-carbon dioxide cell. Nat. Commun. 11, 456 (2020).

    [27] K.M. Naik, A.K. Chourasia, M. Shavez, C.S. Sharma, Bimetallic RuNi electrocatalyst coated MWCNTs cathode for an efficient and stable Li–CO2 and Li–CO2 Mars batteries performance with low overpotential. Chemsuschem 16, e202300734 (2023).

    [28] J.-H. Kang, J. Park, M. Na, R.H. Choi, H.R. Byon, Low-temperature CO2-assisted lithium–oxygen batteries for improved stability of peroxodicarbonate and excellent cyclability. ACS Energy Lett. 7, 4248–4257 (2022).

    [29] W. Cui, C. Ma, X. Lei, Y. Lv, Q. Zhang et al., Gel electrolyte with dimethyl sulfoxide confined in a polymer matrix for Li-air batteries operable at sub-zero temperature. J. Power. Sources 577, 233264 (2023).

    [30] H. Kim, J.Y. Hwang, Y.G. Ham, H.N. Choi, M.H. Alfaruqi et al., Turning on lithium-sulfur full batteries at -10 °C. ACS Nano 17, 14032–14042 (2023).

    [31] A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020).

    [32] J. Li, L. Wang, Y. Zhao, S. Li, X. Fu et al., Li–CO2 batteries efficiently working at ultra-low temperatures. Adv. Funct. Mater. 30, 2001619 (2020).

    [33] D.-H. Guan, X.-X. Wang, F. Li, L.-J. Zheng, M.-L. Li et al., All-solid-state photo-assisted Li–CO2 battery working at an ultra-wide operation temperature. ACS Nano 16, 12364–12376 (2022).

    [34] D. Zhu, Q. Zhao, G. Fan, S. Zhao, L. Wang et al., Photoinduced oxygen reduction reaction boosts the output voltage of a zinc-air battery. Angew. Chem. Int. Ed. 58, 12460–12464 (2019).

    [35] M. Li, X. Wang, F. Li, L. Zheng, J. Xu et al., A bifunctional photo-assisted Li–O2 battery based on a hierarchical heterostructured cathode. Adv. Mater. 32, e1907098 (2020).

    [36] H. Song, S. Wang, X. Song, J. Wang, K. Jiang et al., Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy Environ. Sci. 13, 1205–1211 (2020).

    [37] H. Zhang, J. Luo, M. Qi, S. Lin, Q. Dong et al., Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions. Angew. Chem. Int. Ed. 60, 19183–19190 (2021).

    [38] G.M. Carroll, H. Zhang, J.R. Dunklin, E.M. Miller, N.R. Neale et al., Unique interfacial thermodynamics of few-layer 2D MoS2 for (photo)electrochemical catalysis. Energy Environ. Sci. 12, 1648–1656 (2019).

    [39] S. Song, Z. Xing, K. Wang, H. Zhao, P. Chen et al., 3D flower-like mesoporous Bi4O5I2/MoS2 Z-scheme heterojunction with optimized photothermal-photocatalytic performance. Green Energy Environ. 8, 200–212 (2023).

    [40] Y. Liu, R. Wang, Y. Lyu, H. Li, L. Chen, Rechargeable Li/CO2–O2 (2: 1) battery and Li/CO2 battery. Energy Environ. Sci. 7, 677–681 (2014).

    [41] J. Wang, W. Fang, Y. Hu, Y. Zhang, J. Dang et al., Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Appl. Catal. B Environ. 298, 120490 (2021).

    [42] H.-Y. Lin, K.T. Le, P.-H. Chen, J.M. Wu, Systematic investigation of the piezocatalysis–adsorption duality of polymorphic MoS2 nanoflowers. Appl. Catal. B Environ. 317, 121717 (2022).

    [43] X. Gan, H. Zhao, D. Lei, P. Wang, Improving electrocatalytic activity of 2H-MoS2 nanosheets obtained by liquid phase exfoliation: Covalent surface modification versus interlayer interaction. J. Catal. 391, 424–434 (2020).

    [44] P. Tiwari, D. Janas, R. Chandra, Self-standing MoS2/CNT and MnO2/CNT one dimensional core shell heterostructures for asymmetric supercapacitor application. Carbon 177, 291–303 (2021).

    [45] H. Wang, X. Xu, A. Neville, Facile synthesis of vacancy-induced 2H-MoS2 nanosheets and defect investigation for supercapacitor application. RSC Adv. 11, 26273–26283 (2021).

    [46] L.X. Chen, Z.W. Chen, Y. Wang, C.C. Yang, Q. Jiang, Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal. 8, 8107–8114 (2018).

    [47] R. Meng, F. Li, D. Li, B. Jin, A green and efficient synthesis method of Benzo[c]cinnolines: electrochemical reduction of 2, 2’-Dinitrobiphenyl in the presence of CO2. ChemElectroChem 9, 2101381 (2022).

    [48] D. Sun, D. Huang, H. Wang, G.-L. Xu, X. Zhang et al., 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61, 361–369 (2019).

    [49] Z. Lu, M. Xiao, S. Wang, D. Han, Z. Huang et al., Correction: a rechargeable Li–CO2 battery based on the preservation of dimethyl sulfoxide. J. Mater. Chem. A 10, 15839 (2022).

    [50] Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Photo-energy conversion and storage in an aprotic Li–O2 battery. Angew. Chem. Int. Ed. 58, 19021–19026 (2019).

    [51] D.-H. Guan, X.-X. Wang, M.-L. Li, F. Li, L.-J. Zheng et al., Light/electricity energy conversion and storage for a hierarchical porous In2S3@CNT/SS cathode towards a flexible Li–CO2 battery. Angew. Chem. Int. Ed. 59, 19518–19524 (2020).

    [52] Z. Wang, B. Liu, X. Yang, C. Zhao, P. Dong et al., Dual catalytic sites of alloying effect bloom CO2 catalytic conversion for highly stable Li–CO2 battery. Adv. Funct. Mater. 33, 2213931 (2023).

    [53] X. Sun, X. Mu, W. Zheng, L. Wang, S. Yang et al., Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 14, 536 (2023).

    [54] X. Yu, H. Gong, B. Gao, X. Fan, P. Li et al., Illumination-enhanced oxygen reduction kinetics in hybrid lithium-oxygen battery with p-type semiconductor. Chem. Eng. J. 449, 137774 (2022).

    [55] H. Gong, T. Wang, K. Chang, P. Li, L. Liu et al., Revealing the illumination effect on the discharge products in high-performance Li–O2 batteries with heterostructured photocatalysts. Carbon Energy 4, 1169–1181 (2022).

    [56] K. Zhang, J. Li, W. Zhai, C. Li, Z. Zhu et al., Boosting cycling stability and rate capability of Li–CO2 batteries via synergistic photoelectric effect and plasmonic interaction. Angew. Chem. Int. Ed. 61, e202201718 (2022).

    [57] X.-X. Wang, D.-H. Guan, F. Li, M.-L. Li, L.-J. Zheng et al., A renewable light-promoted flexible Li–CO2 battery with ultrahigh energy efficiency of 97.9%. Small 17, e2100642 (2021).

    [58] J.-N. Chang, S. Li, Q. Li, J.-H. Wang, C. Guo et al., Redox molecular junction metal-covalent organic frameworks for light-assisted CO2 energy storage. Angew. Chem. Int. Ed. 63, e202402458 (2024).

    [59] Z. Li, M.-L. Li, X.-X. Wang, D.-H. Guan, W.-Q. Liu et al., In situ fabricated photo-electro-catalytic hybrid cathode for light-assisted lithium–CO2 batteries. J. Mater. Chem. A 8, 14799–14806 (2020).

    [60] S. Chen, H. Wang, S. Lu, Y. Xiang, Monolayer MoS2 film supported metal electrocatalysts: a DFT study. RSC Adv. 6, 107836–107839 (2016).

    [61] Y. Bae, H. Song, H. Park, H.-D. Lim, H.J. Kwon et al., Dual-functioning molecular carrier of superoxide radicals for stable and efficient lithium–oxygen batteries. Adv. Energy Mater. 10, 1904187 (2020).

    [62] H. Gong, X. Yu, Y. Xu, B. Gao, H. Xue et al., Long-life reversible Li-CO2 batteries with optimized Li2CO3 flakes as discharge products on palladium-copper nanoparticles. Inorg. Chem. Front. 9, 1533–1540 (2022).

    [63] A. Ahmadiparidari, R.E. Warburton, L. Majidi, M. Asadi, A. Chamaani et al., A long-cycle-life lithium-CO2 battery with carbon neutrality. Adv. Mater. 31, e1902518 (2019).

    Tingsong Hu, Wenyi Lian, Kang Hu, Qiuju Li, Xueliang Cui, Tengyu Yao, Laifa Shen. Photo-Energized MoS2/CNT Cathode for High-Performance Li–CO2 Batteries in a Wide-Temperature Range[J]. Nano-Micro Letters, 2025, 17(1): 005
    Download Citation