• Chinese Journal of Lasers
  • Vol. 43, Issue 9, 901004 (2016)
Tian Kun, Zou Yonggang*, Hai Yina, Wang Dan, Bai Yunfeng, Fan Jie, Wang Haizhu, and Ma Xiaohui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201643.0901004 Cite this Article Set citation alerts
    Tian Kun, Zou Yonggang, Hai Yina, Wang Dan, Bai Yunfeng, Fan Jie, Wang Haizhu, Ma Xiaohui. Design of Subwavelength Anti-Reflective Grating[J]. Chinese Journal of Lasers, 2016, 43(9): 901004 Copy Citation Text show less
    References

    [1] Qi F, Ma Q Y, Wang Y F, et al. Large-aperture subwavelength grating coupler[J]. Applied Optics, 2016, 55(11): 2960-2966.

    [2] Liu L, Deng Q Z, Zhou Z P. Subwavelength-grating-assisted broadband polarization-independent directional coupler[J]. Optics Letters, 2016, 41(7): 1648-1651.

    [3] Wang Y, Shi W, Wang X, et al. Design of broadband subwavelength grating couplers with low back reflection[J]. Optics Letters, 2015, 40(20): 4647-4650.

    [4] Zhang J J, Yang J B, Lu H Y, et al. Subwavelength TE/TM grating coupler based on silicon-on-insulator[J]. Infrared Physics & Technology, 2015, 71: 542-546.

    [5] Li H Q, Cui B B, Liu Y, et al. Investigation of the chip to photodetector coupler with subwavelength grating on SOI[J]. Optics & Laser Technology, 2016, 76: 79-84.

    [6] Li X F, Peng W, Zhao Y L, et al. A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index[J]. Chinese Physics B, 2015, 25(3): 037303.

    [7] Du M D, Sun J Q. Performance enhancement of photodetector using defect subwavelength metallic grating[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2646-2649.

    [8] Wang R, Li T, Shao X M, et al. Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14471-14476.

    [9] Xu L H, Zheng G G, Zhao D L, et al. Polarization-independent narrow-band optical filters with suspended subwavelength silica grating in the infrared region[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(2): 955-958.

    [10] Nikkhah H, Hall T J. Subwavelength grating waveguides for integrated photonics[J]. Applied Physics A, 2016, 122(4): 1-6.

    [11] Tian H, Cui X, Du Y, et al. Broadband high reflectivity in subwavelength-grating slab waveguides[J]. Optics Express, 2015, 23(21): 27174-27179.

    [12] Liang H M, Wang J Q, Wang X, et al. Surface plasmon interference lithography assisted by a Fabry-Perot cavity composed of subwavelength metal grating and thin metal film[J]. Chinese Physics Letters, 2015, 32(10): 51-54.

    [13] Huo F, Li Y F, To S, et al. Optimal design of broadband antireflective subwavelength gratings for solar applications[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(20): 2626-2628.

    [14] Gebski M, Dems M, Wasiak M, et al. Monolithic subwavelength high-index-contrast grating VCSEL[J]. IEEE Photonics Technology Letters, 2015, 27(8): 1953-1956.

    [15] Yao D Y, Zhang J C, Liu Y H, et al. Small divergence substrate emitting quantum cascade laser by subwavelength metallic grating[J]. Optics Express, 2015, 23(9): 11462-11469.

    [16] Takashima Y, Tanabe M, Haraguchi M, et al. Highly polarized emission from a GaN-based ultraviolet light-emitting diode using a Si-subwavelength grating on a SiO2 underlayer[J]. Optics Communication, 2016, 369(15): 38-43.

    [17] Honma H, Takahashi K, Ishida M, et al. Continuous control surface-plasmon excitation wavelengths using nanomechanically stretched subwavelength grating[J]. Applied Physics Express, 2016, 9(2): 027201.

    [18] Indumathi R S, Li Y, William F D, et al. Subwavelgnth grating based metal-oxide nano-hair structures for optical vortex generation[J]. Optics Express, 2015, 23(15): 19056-19065.

    [19] Ma Youqiao, Zhou Jun, Sun Tietun, et al. Design of antireflection structure of photovoltaic cells with sub-wavelength grating based on EMT[J]. Acta Energiae Solaris Sinica, 2010, 31(10): 1353-1357.

    [20] Cao Zhaoliang. Design analysis and fabrication of subwavelength antireflective gratings[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003: 26-27.

    [21] Rytov S M. Electromagetic properties of a finely stratified medium[J]. Soviet Physics JETP, 1956, 2(3): 466-475.

    [22] Luo Chenchen. Research on the fabrication and properties of mirco/nano grating[D]. Shanghai: Shanghai Jiao Tong University, 2013: 26-27.

    [23] Tang Jinfa, Zheng Quan. Applied thin film optics[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1984: 45-46.

    [24] Li Yunfang. Study on optical characteristics of subwavelength optical elements[D]. Changchun: Changchun University of Science and Technology, 2013: 6-9.

    [25] Moharam M G, Eric B G, Drew A P, et al. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America A, 1995, 12(5): 1068-1076.

    [26] Gaylord T K, Moharam M G. Analysis and applications of optical diffraction by gratings[J]. Proceedings of the IEEE, 1985, 73(5): 894-937.

    Tian Kun, Zou Yonggang, Hai Yina, Wang Dan, Bai Yunfeng, Fan Jie, Wang Haizhu, Ma Xiaohui. Design of Subwavelength Anti-Reflective Grating[J]. Chinese Journal of Lasers, 2016, 43(9): 901004
    Download Citation