• Chinese Journal of Lasers
  • Vol. 51, Issue 1, 0101004 (2024)
Wei Qi, Shukai He, Bo Cui, Zhimeng Zhang, Wei Hong, Zongqing Zhao, Yuqiu Gu*, and Weiming Zhou**
Author Affiliations
  • National Key Laboratory of Plasma Physics, Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • show less
    DOI: 10.3788/CJL231292 Cite this Article Set citation alerts
    Wei Qi, Shukai He, Bo Cui, Zhimeng Zhang, Wei Hong, Zongqing Zhao, Yuqiu Gu, Weiming Zhou. Research Progress of Beam‐target Neutron Source and Applications Driven by Ultra‐short Pulse Laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101004 Copy Citation Text show less
    References

    [1] Lu X T[M]. Nuclear physics(2000).

    [2] Chen D, Jia W B[M]. Applied neutron physics(2015).

    [3] Ding D Z, Ye C T[M]. Neutron physics-principles, methods, and applications(2001).

    [4] Zou Y B, Tang G Y, Xu J G et al. Experimental study of fast neutron resonance radiography[J]. Atomic Energy Science & Technology, 42, 17-20(2008).

    [5] Vartsky D, Mor I, Goldberg M B et al. Novel detectors for fast-neutron resonance radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 623, 603-605(2010).

    [6] Wang J. Study on the key technologies of collimation and imaging of deuterium-tritium fast neutron radiography system[D](2019).

    [7] Perkins L J, Logan B G, Rosen M D et al. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence[J]. Nuclear Fusion, 40, 1-19(2000).

    [8] Wang G C. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 14, 641-645(1987).

    [9] He J J, Zhou X H, Zhang Y H. Experimental studies of nuclear astrophysics[J]. Physics, 42, 484-495(2013).

    [10] Wallerstein G, Iben I, Parker P et al. Synthesis of the elements in stars: forty years of progress[J]. Reviews of Modern Physics, 69, 995-1084(1997).

    [11] Thielemann F K, Arcones A, Käppeli R et al. What are the astrophysical sites for the r-process and the production of heavy elements?[J]. Progress in Particle and Nuclear Physics, 66, 346-353(2011).

    [12] Tajima T, Dawson J M. Laser electron accelerator[J]. Physical Review Letters, 43, 267-270(1979).

    [13] Modena A, Najmudin Z, Dangor A E et al. Electron acceleration from the breaking of relativistic plasma waves[J]. Nature, 377, 606-608(1995).

    [14] Malka V, Fritzler S, Lefebvre E et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 298, 1596-1600(2002).

    [15] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [16] Roth M, Jung D, Falk K et al. A tabletop neutron source[J]. Nature, 494, 9(2013).

    [17] Zweiback J, Cowan T E, Smith R A et al. Characterization of fusion burn time in exploding deuterium cluster plasmas[J]. Physical Review Letters, 85, 3640-3643(2000).

    [18] Pomerantz I, McCary E, Meadows A et al. Ultrashort pulsed neutron source[J]. Physical Review Letters, 113, 184801(2014).

    [19] Guler N, Volegov P, Favalli A et al. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility[J]. Journal of Applied Physics, 120, 154901(2016).

    [20] Arikawa Y, Utsugi M, Alessio M et al. High-intensity neutron generation via laser-driven photonuclear reaction[J]. Plasma and Fusion Research, 10, 2404003(2015).

    [21] Alvarez J, Fernández-Tobias J, Mima K et al. Laser driven neutron sources: characteristics, applications and prospects[J]. Physics Procedia, 60, 29-38(2014).

    [22] Chen S N, Negoita F, Spohr K et al. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory[J]. Matter and Radiation at Extremes, 4, 054402(2019).

    [23] Pomerantz I, McCary E, Meadows A R et al. Laser generation of ultra-short neutron bursts from high atomic number converters[J]. Proceedings of SPIE, 9514, 95140Q(2015).

    [24] Ditmire T, Zweiback J, Yanovsky V P et al. Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters[J]. Nature, 398, 489-492(1999).

    [25] Curtis A, Calvi C, Tinsley J et al. Micro-scale fusion in dense relativistic nanowire array plasmas[J]. Nature Communications, 9, 1077(2018).

    [26] Zhang Y H, Wang W M, Li Y T et al. Effects of internal target structures on laser-driven neutron production[J]. Nuclear Fusion, 59, 076032(2019).

    [27] Xi X F, Lü C, Ma W J et al. Deuterium–deuterium fusion in nanowire plasma driven with a nanosecond high-energy laser[J]. Frontiers in Physics, 11, 1212293(2023).

    [28] Yang Y L, Lv C, Sun W et al. Neutron generation enhanced by a femtosecond laser irradiating on multi-channel target[J]. Frontiers in Physics, 11, 1189755(2023).

    [29] Galy J, Maučec M, Hamilton D J et al. Bremsstrahlung production with high-intensity laser matter interactions and applications[J]. New Journal of Physics, 9, 23(2007).

    [30] Qi W, Zhang X H, Zhang B et al. Enhanced photoneutron production by intense picoseconds laser interacting with gas-solid hybrid targets[J]. Physics of Plasmas, 26, 043103(2019).

    [31] Feng J E, Fu C B, Li Y F et al. High-efficiency neutron source generation from photonuclear reactions driven by laser plasma accelerator[J]. High Energy Density Physics, 36, 100753(2020).

    [32] Günther M M, Rosmej O N, Tavana P et al. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science[J]. Nature Communications, 13, 170(2022).

    [33] Li Y J, Feng J, Wang W Z et al. Micro-size picosecond-duration fast neutron source driven by a laser-plasma wakefield electron accelerator[J]. High Power Laser Science and Engineering, 10, e33(2022).

    [34] Fews A P, Norreys P A, Beg F N et al. Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets[J]. Physical Review Letters, 73, 1801-1804(1994).

    [35] Norreys P A, Fews A P, Beg F N et al. Neutron production from picosecond laser irradiation of deuterated targets at intensities of 1019 W·cm-2[J]. Plasma Physics and Controlled Fusion, 40, 175-182(1998).

    [36] Gu Y Q. Research on superthermal electron transport and related phenomena[D](2004).

    [39] Higginson D P, McNaney J M, Swift D C et al. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions[J]. Physics of Plasmas, 18, 100703(2011).

    [40] Disdier L, Garçonnet J P, Malka G et al. Fast neutron emission from a high-energy ion beam produced by a high-intensity subpicosecond laser pulse[J]. Physical Review Letters, 82, 1454-1457(1999).

    [41] Izumi N, Sentoku Y, Habara H et al. Observation of neutron spectrum produced by fast deuterons via ultraintense laser plasma interactions[J]. Physical Review E, 65, 036413(2002).

    [42] Wilks S C, Langdon A B, Cowan T E et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Physics of Plasmas, 8, 542-549(2001).

    [43] Daido H, Nishiuchi M, Pirozhkov A S. Review of laser-driven ion sources and their applications[J]. Reports on Progress in Physics, 75, 056401(2012).

    [44] Wan Y, Andriyash I, Lu W et al. Effects of the transverse instability and wave breaking on the laser-driven thin foil acceleration[J]. Physical Review Letters, 125, 104801(2020).

    [45] Lancaster K L, Karsch S, Habara H et al. Characterization of 7Li (p, n)7 Be neutron yields from laser produced ion beams for fast neutron radiography[J]. Physics of Plasmas, 11, 3404-3408(2004).

    [46] Davis J, Petrov G M, Petrova T et al. Neutron production from 7Li (d, xn) nuclear fusion reactions driven by high-intensity laser–target interactions[J]. Plasma Physics and Controlled Fusion, 52, 045015(2010).

    [47] Davis J, Petrov G M. Angular distribution of neutrons from high-intensity laser-target interactions[J]. Plasma Physics and Controlled Fusion, 50, 065016(2008).

    [48] Petrov G M, Davis J. Neutron production from interactions of high-intensity ultrashort pulse laser with a planar deuterated polyethylene target[J]. Physics of Plasmas, 15, 073109(2008).

    [49] Kar S, Green A, Ahmed H et al. Beamed neutron emission driven by laser accelerated light ions[J]. New Journal of Physics, 18, 053002(2016).

    [50] Yogo A, Lan Z, Arikawa Y et al. Laser-driven neutron generation realizing single-shot resonance spectroscopy[J]. Physical Review X, 13, 011011(2023).

    [51] Jiang X R, Shao F Q, Zou D B et al. Energetic deuterium-ion beams and neutron source driven by multiple-laser interaction with pitcher-catcher target[J]. Nuclear Fusion, 60, 076019(2020).

    [52] Lan Z C, Yogo A. Exploring nuclear photonics with a laser driven neutron source[J]. Plasma Physics and Controlled Fusion, 64, 024001(2022).

    [53] Mirani F, Maffini A, Passoni M. Laser-driven neutron generation with near-critical targets and application to materials characterization[J]. Physical Review Applied, 19, 044020(2023).

    [54] Albright B J, Yin L, Favalli A. Improved yield and control of spectra from high-intensity laser-generated neutron beams[J]. Laser and Particle Beams, 36, 15-21(2018).

    [55] Cui B. Research on the application of ultra strong laser driven beam target neutron source in special material detection[D](2023).

    [56] Zepf M, Clark E L, Beg F N et al. Proton acceleration from high-intensity laser interactions with thin foil targets[J]. Physical Review Letters, 90, 064801(2003).

    [57] Hegelich B M, Albright B J, Cobble J et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 439, 441-444(2006).

    [58] Schwoerer H, Pfotenhauer S, Jäckel O et al. Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets[J]. Nature, 439, 445-448(2006).

    [59] Pfotenhauer S M, Jäckel O, Sachtleben A et al. Spectral shaping of laser generated proton beams[J]. New Journal of Physics, 10, 033034(2008).

    [60] Hou B X, Nees J A, He Z H et al. Laser-ion acceleration through controlled surface contamination[J]. Physics of Plasmas, 18, 040702(2011).

    [61] Morrison J T, Storm M, Chowdhury E et al. Selective deuteron production using target normal sheath acceleration[J]. Physics of Plasmas, 19, 030707(2012).

    [62] Maksimchuk A, Raymond A, Yu F et al. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation[J]. Applied Physics Letters, 102, 191117(2013).

    [63] Krygier A G, Morrison J T, Kar S et al. Selective deuterium ion acceleration using the Vulcan petawatt laser[J]. Physics of Plasmas, 22, 053102(2015).

    [64] Alejo A, Krygier A G, Ahmed H et al. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets[J]. Plasma Physics and Controlled Fusion, 59, 064004(2017).

    [65] Roth M, Jung D, Falk K et al. Bright laser-driven neutron source based on the relativistic transparency of solids[J]. Physical Review Letters, 110, 044802(2013).

    [66] Huang C K, Broughton D P, Palaniyappan S et al. High-yield and high-angular-fluence neutron generation from deuterons accelerated by laser-driven collisionless shock[J]. Applied Physics Letters, 120, 024102(2022).

    [67] Yao Y, He S, Lei Z et al. High-flux neutron generator based on laser-driven collisionless shock acceleration[J]. Physical Review Letters, 131, 025101(2023).

    [68] Kleinschmidt A, Bagnoud V, Deppert O et al. Intense, directed neutron beams from a laser-driven neutron source at PHELIX[J]. Physics of Plasmas, 25, 053101(2018).

    [69] Fischer U, Avrigeanu M, Pereslavtsev P et al. Evaluation and validation of d-Li cross section data for the IFMIF neutron source term simulation[J]. Journal of Nuclear Materials, 367/368/369/370, 1531-1536(2007).

    [70] Lebois M, Wilson J N, Halipré P et al. Development of a kinematically focused neutron source with the p(7Li, n)7Be inverse reaction[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 145-151(2014).

    [71] Lu X T. Suggestions on using 4He(13C, n)16O and1H(7Li, n)7Be reactions as neutron sources[J]. Atomic Energy Science and Technology, 13, 220-222(1979).

    [72] Dave J H, Gould C R, Wender S A et al. The 1H(7Li, n)7Be reaction as an intense MeV neutron source[J]. Nuclear Instruments and Methods in Physics Research, 200, 285-290(1982).

    [73] Hasegawa K, Kotajima K, Kitamura M et al. Production of focused neutron beam using heavy ion reaction[J]. CYRIC Annual Report, 1986, 103-110(1986).

    [74] Liu P, Liang T Y, Wu D et al. Laser-driven collimated neutron sources based on kinematic focusing[J]. Physical Review Applied, 18, 044004(2022).

    [75] Cui B, He S K, Liu H J et al. Neutron spectrum measurement for picosecond laser pulse neutron source experiment with liquid scintillator detector[J]. High Power Laser and Particle Beams, 28, 124005(2016).

    [77] Jung D, Falk K, Guler N et al. Characterization of a novel, short pulse laser-driven neutron source[J]. Physics of Plasmas, 20, 056706(2013).

    [78] Ilić R, Durrani S A. Solid state nuclear track detectors[M]. L'Annunziata M F. Handbook of radioactivity analysis. 2nd ed, 179-237(2003).

    [79] Wang X G, Luo Y S, Zhang H et al. Optimum condition of chemical etching of CR-39 solid state nuclear track detector for neutron measurement[J]. Nuclear Techniques, 28, 319-323(2005).

    [80] Durrani S A. Nuclear tracks today: strengths, weaknesses, challenges[J]. Radiation Measurements, 43, S26-S33(2008).

    [81] Mori T, Yogo A, Hayakawa T et al. Direct evaluation of high neutron density environment using (n, 2n) reaction induced by laser-driven neutron source[J]. Physical Review C, 104, 015808(2021).

    [82] Cui B, Zhang Z M, Dai Z H et al. Experimental study of high yield neutron source based on multi reaction channels[J]. High Power Laser and Particle Beams, 33, 123-129(2021).

    [83] Tanaka H, Kurosawa S, Yamaji A et al. Evaluation of neutron pulse width in laser-driven neutron source using organic scintillator[C], 2020.

    [84] Zimmer M, Scheuren S, Kleinschmidt A et al. Development of a setup for material identification based on laser-driven neutron resonance spectroscopy[J]. EPJ Web of Conferences, 231, 01006(2020).

    [85] Higginson D, Vassura L, Gugiu M et al. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers[J]. Physical Review Letters, 115, 054802(2015).

    [86] Fernández Juan C, Cort Gautier D, Chengkung H et al. Laser-plasmas in the relativistic-transparency regime: science and applications[J]. Physics of Plasmas, 24, 056702(2017).

    [87] Mizutani R, Abe Y, Arikawa Y et al. The avalanche image intensifier panel for fast neutron radiography by using laser-driven neutron sources[J]. High Energy Density Physics, 36, 100833(2020).

    [88] Williams G J, Aufderheide M, Champley K M et al. Dual-energy fast neutron imaging using tunable short-pulse laser-driven sources[J]. Review of Scientific Instruments, 93, 093514(2022).

    [89] Abe Y, Nakao A, Arikawa Y et al. Predictive capability of material screening by fast neutron activation analysis using laser-driven neutron sources[J]. Review of Scientific Instruments, 93, 093523(2022).

    [90] Hill P, Wu Y B. Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes[J]. Physical Review C, 103, 014602(2021).

    [91] Zimmer M, Scheuren S, Kleinschmidt A et al. Demonstration of non-destructive and isotope-sensitive material analysis using a short-pulsed laser-driven epi-thermal neutron source[J]. Nature Communications, 13, 1173(2022).

    [92] Mirfayzi S R, Yogo A, Lan Z et al. Proof-of-principle experiment for laser-driven cold neutron source[J]. Scientific Reports, 10, 20157(2020).

    Wei Qi, Shukai He, Bo Cui, Zhimeng Zhang, Wei Hong, Zongqing Zhao, Yuqiu Gu, Weiming Zhou. Research Progress of Beam‐target Neutron Source and Applications Driven by Ultra‐short Pulse Laser (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0101004
    Download Citation