• Chinese Optics Letters
  • Vol. 21, Issue 5, 051601 (2023)
Fuguang Chen1, Zhi Chen1、*, Jianrong Qiu2, Shuai Zhang3、**, and Zhijun Ma1、***
Author Affiliations
  • 1Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311121, China
  • 2State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Zhejiang Chinese Medical University, Hangzhou 311100, China
  • show less
    DOI: 10.3788/COL202321.051601 Cite this Article Set citation alerts
    Fuguang Chen, Zhi Chen, Jianrong Qiu, Shuai Zhang, Zhijun Ma. Highly efficient, tunable, ultrabroadband NIR photoemission from Bi-doped nitridated germanate glasses toward all-band amplification in optical communication[J]. Chinese Optics Letters, 2023, 21(5): 051601 Copy Citation Text show less
    References

    [1] J. Kaur, M. A. Khan, M. Iftikhar, M. Imran, Q. E. U. Haq. Machine learning techniques for 5G and beyond. IEEE Access, 9, 23472(2021).

    [2] W. Wang, H. Wang, G. Lin. Ultrahigh-speed violet laser diode based free-space optical communication beyond 25 Gbit/s. Sci. Rep., 8, 13142(2018).

    [3] Y. Wang, L. Zhong, Z. Chen, D. Tan, Z. Fang, Y. Yang, S. Sun, L. Yang, J. Qiu. Photonic lattice-like waveguides in glass directly written by femtosecond laser for on-chip mode conversion. Chin. Opt. Lett., 20, 031406(2022).

    [4] S. Jetschke, S. Unger, A. Schwuchow, M. Leich, J. Kirchhof. Efficient Yb laser fibers with low photodarkening by optimization of the core composition. Opt. Express, 16, 15540(2008).

    [5] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express, 18, 26704(2010).

    [6] A. Herrera, F. Londoño, N. Balzaretti. Structural and optical properties of Nd3+ doped GeO2-PbO glass modified by TiO2 for applications in laser and fiber amplifier. Opt. Mater., 113, 110884(2021).

    [7] Q. Mao, B. Lan, S. Zhou. Crystallization control in Ni2+-doped glass-ceramics for broadband near-infrared luminesce. J. Am. Ceram. Soc., 103, 2569(2020).

    [8] T. I. Yang, Y. C. Lin, S. C. Wang, S. L. Huang. Near-infrared broadband emission from glass-clad Cr-doped yttrium orthosilicate crystal fiber. Opt. Mater. Express, 11, 674(2021).

    [9] K. Murata, Y. Fujimoto, T. Kanabe, H. Fujita, M. Nakatsuka. Bi-doped SiO2 as a new laser material for an intense laser. Fusion Eng. Des., 44, 437(1999).

    [10] Y. Fujimoto, M. Nakatsuka. Infrared luminescence from bismuth-doped silica glass. Jpn. J. Appl. Phys., 40, L279(2001).

    [11] Y. Ososkov, A. Khegai, S. Firstov, K. Riumkin, S. Alyshev, A. Kharakhordin, A. Lobanov, A. Guryanov, M. Melkumov. Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm −3 dB gain bandwidth. Opt. Express, 29, 44138(2021).

    [12] V. Dvoyrin, V. Mashinsky, L. Bulatov, I. Bufetov, A. Shubin, M. Melkumov, E. Kustov, E. Dianov, A. Umnikov, V. Khopin. Bismuth-doped-glass optical fibers—a new active medium for lasers and amplifiers. Opt. Lett., 31, 2966(2006).

    [13] S. V. Firstov, A. M. Khegai, A. V. Kharakhordin, S. V. Alyshev, E. G. Firstova, Y. J. Ososkov, M. A. Melkumov, L. D. Iskhakova, E. B. Evlampieva, A. S. Lobanov. Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications. Sci. Rep., 10, 11347(2020).

    [14] Z. Zhang, J. Cao, J. Zheng, M. Peng, S. Xu, Z. Yang. Bismuth-doped germanate glass fiber fabricated by the rod-in-tube technique. Chin. Opt. Lett., 15, 121601(2017).

    [15] X. Li, M. Peng, J. Cao, Z. Yang, S. Xu. Distribution and stabilization of bismuth NIR centers in Bi-doped aluminosilicate laser glasses by managing glass network structure. J. Mater. Chem. C, 6, 7814(2018).

    [16] F. Chen, Y. Wang, W. Chen, P. Xiong, B. Jiang, S. Zhou, Z. Ma, M. Peng. Regulating the Bi NIR luminescence behaviours in fluorine and nitrogen co-doped germanate glasses. Mater. Adv., 2, 4743(2021).

    [17] J. Cao, Y. Xue, J. Peng, X. Li, M. Huang, S. Xu, Z. Yang, M. Peng. Enhanced NIR photoemission from Bi-doped aluminoborate glasses via topological tailoring of glass structure. J. Am. Ceram. Soc., 102, 1710(2019).

    [18] R. Wan, Z. Song, Y. Li, Q. Liu, Y. Zhou, J. Qiu, Z. Yang, Z. Yin, Q. Wang, D. Zhou. Influence of alkali metal ions on thermal stability of Bi-activated NIR-emitting alkali-aluminoborosilicate glasses. Chin. Opt. Lett., 12, 111601(2014).

    [19] S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi. Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Opt. Mater., 31, 1262(2009).

    [20] B. Xu, S. Zhou, M. Guan, D. Tan, Y. Teng, J. Zhou, Z. Ma, Z. Hong, J. Qiu. Unusual luminescence quenching and reviving behavior of Bi-doped germanate glasses. Opt. Express, 19, 23436(2011).

    [21] V. G. Truong, L. Bigot, A. Lerouge, M. Douay, I. Razdobreev. Study of thermal stability and luminescence quenching properties of bismuth-doped silicate glasses for fiber laser applications. Appl. Phys. Lett., 92, 041908(2008).

    [22] L. Wang, J. Cao, Y. Lu, X. Li, S. Xu, Q. Zhang, Z. Yang, M. Peng. In situ instant generation of an ultrabroadband near-infrared emission center in bismuth-doped borosilicate glasses via a femtosecond laser. Photonics Res., 7, 300(2019).

    [23] X. Li, F. Hu, M. Peng, Q. Zhang. Crystallization kinetics and enhanced Bi NIR luminescence of transparent silicate glass-ceramics containing Sr2YbF7 nanocrystals. J. Am. Ceram. Soc., 100, 574(2017).

    [24] W. Wang, J. Yuan, D. Chen, Q. Qian, Q. Zhang. Enhanced broadband 1.8 µm emission in Bi/Tm3+ co-doped fluorogermanate glasses. Opt. Mater. Express, 5, 1250(2015).

    [25] J. Xiao, J. Cao, Y. Wang, X. Li, X. Wang, J. Zhang, M. Peng. Temperature dependent energy transfer in Bi/Er codoped barium gallogermanate glasses for tunable and broadband NIR emission. J. Mater. Chem. C, 7, 10544(2019).

    [26] M. Peng, C. Zollfrank, L. Wondraczek. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature. J. Phys. Condens. Matter, 21, 285106(2009).

    [27] N. Zhang, J. Qiu, G. Dong, Z. Yang, Q. Zhang, M. Peng. Broadband tunable near-infrared emission of Bi-doped composite germanosilicate glasses. J. Mater. Chem., 22, 3154(2012).

    [28] B. Xu, S. Zhou, D. Tan, Z. Hong, J. Hao, J. Qiu. Multifunctional tunable ultra-broadband visible and near-infrared luminescence from bismuth-doped germanate glasses. J. Appl. Phys., 113, 083503(2013).

    [29] J. Cao, L. Wondraczek, Y. Wang, L. Wang, J. Li, S. Xu, M. Peng. Ultrabroadband near-infrared photoemission from bismuth-centers in nitridated oxide glasses and optical fiber. ACS Photonics, 5, 4393(2018).

    [30] J. Cao, S. Xu, Q. Zhang, Z. Yang, M. Peng. Ultrabroad photoemission from an amorphous solid by topochemical reduction. Adv. Opt. Mater., 6, 1801059(2018).

    [31] J. Cao, A. Reupert, Y. Ding, L. Wondraczek. Intense broadband photoemission from Bi-doped ZrO2 embedded in vitreous aluminoborate via direct melt-quenching. J. Am. Ceram. Soc., 105, 2616(2022).

    [32] R. Cao, M. Peng, J. Zheng, J. Qiu, Q. Zhang. Superbroad near to mid infrared luminescence from closo-deltahedral Bi53+ cluster in Bi5(GaCl4)3. Opt. Express, 20, 18505(2012).

    [33] A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V. B. Tsvetkov, L. A. Trusov, P. E. Kazin, V. B. Sulimov. On the origin of near-IR luminescence in Bi-doped materials. (II). Subvalent monocation Bi+ and cluster Bi53+ luminescence in AlCl3/ZnCl2/BiCl3 chloride glass. Opt. Express, 20, 7212(2012).

    [34] M. Peng, B. Sprenger, M. A. Schmidt, H. Schwefel, L. Wondraczek. Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting bismuth centers. Opt. Express, 18, 12852(2010).

    [35] V. Sokolov, V. Plotnichenko, E. Dianov. Origin of near-IR luminescence in Bi2O3–GeO2 and Bi2O3–SiO2 glasses: first-principle study. Opt. Mater. Express, 5, 163(2015).

    [36] Q. Chen, W. Jing, Y.-Y. Yeung, M. Yin, C.-K. Duan. Mechanisms of bismuth-activated near-infrared photoluminescence–a first-principles study on the MXCl3 series. Phys. Chem. Chem. Phys., 23, 17420(2021).

    [37] Y. Zhao, L. Wondraczek, A. Mermet, M. Peng, Q. Zhang, J. Qiu. Homogeneity of bismuth-distribution in bismuth-doped alkali germanate laser glasses towards superbroad fiber amplifiers. Opt. Express, 23, 12423(2015).

    [38] H. Masai, T. Suzuki, Y. Ohishi. Relationship between near-infrared emission of bi-doped glass and preparation conditions. Sens. Mater., 30, 1533(2018).

    [39] H. Verweij, J. Buster. The structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering. J. Non-Cryst. Solids, 34, 81(1979).

    [40] J. Alvarado-Rivera, D. A. Rodríguez-Carvajal, M. C. Acosta-Enríquez, M. B. Manzanares-Martínez, E. Álvarez, R. Lozada-Morales, G. C. Díaz, A. de Leon, M. E. Zayas. Effect of CeO2 on the glass structure of sodium germanate glasses. J. Am. Ceram. Soc., 97, 3494(2014).

    [41] P. Pascuta, E. Culea. FTIR spectroscopic study of some bismuth germanate glasses containing gadolinium ions. Mater. Lett., 62, 4127(2008).

    [42] E. Culea, L. Pop, M. Bosca, T. Rusu, P. Pascuta, S. Rada. FTIR spectroscopic study of some lead germanate glasses. J. Phys. Conf. Ser., 182, 012061(2009).

    [43] P. F. McMillan, W. T. Petuskey, B. Coté, D. Massiot, C. Landron, J.-P. Coutures. A structural investigation of CaO-Al2O3 glasses via 27Al MAS-NMR. J. Non-Cryst. Solids, 195, 261(1996).

    [44] D. R. Neuville, L. Cormier, D. Massiot. Al coordination and speciation in calcium aluminosilicate glasses: effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy. Chem. Geol., 229, 173(2006).

    [45] X. Liu, C. Cheng, X. Li, Q. Jiao, S. Dai. Controllable ultra-broadband visible and near-infrared photoemissions in Bi-doped germanium-borate glasses. J. Am. Ceram. Soc., 103, 183(2020).

    [46] Q. Dong, P. Xiong, J. Yang, Y. Fu, W. Chen, F. Yang, Z. Ma, M. Peng. Bismuth activated blue phosphor with high absorption efficiency for white LEDs. J. Alloys Compd., 885, 160960(2021).

    Fuguang Chen, Zhi Chen, Jianrong Qiu, Shuai Zhang, Zhijun Ma. Highly efficient, tunable, ultrabroadband NIR photoemission from Bi-doped nitridated germanate glasses toward all-band amplification in optical communication[J]. Chinese Optics Letters, 2023, 21(5): 051601
    Download Citation