• Advanced Photonics
  • Vol. 7, Issue 3, 035001 (2025)
Jun-Hee Park1, Jeongho Ha1, Liyi Hsu1, Guang Yang2..., Yeshaiahu Fainman1, Alexander V. Sergienko2 and Abdoulaye Ndao1,2,*|Show fewer author(s)
Author Affiliations
  • 1University of California, San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
  • 2Boston University, Photonics Center, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.AP.7.3.035001 Cite this Article Set citation alerts
    Jun-Hee Park, Jeongho Ha, Liyi Hsu, Guang Yang, Yeshaiahu Fainman, Alexander V. Sergienko, Abdoulaye Ndao, "Observation of robust subwavelength phase singularity in chiral medium," Adv. Photon. 7, 035001 (2025) Copy Citation Text show less
    References

    [1] D. F. G. Arago. Mémoire sur une modification remarquable qu’ éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, & sur quelques autres phénomènes d’optique(1811).

    [2] L. Pasteur. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire(1848).

    [3] W. T. B. Kelvin. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light(1904).

    [4] E. Hendry et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotech., 5, 783-787(2010). https://doi.org/10.1038/nnano.2010.209

    [5] R. Tullius, A. S. Karimullah, M. Rodier. Superchiral spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc., 137, 8380-8383(2015). https://doi.org/10.1021/jacs.5b04806

    [6] D. Schamel et al. Chiral colloidal molecules and observation of the propeller effect. J. Am. Chem. Soc., 135, 12353-12359(2013). https://doi.org/10.1021/ja405705x

    [7] C. Wagenknecht et al. Experimental demonstration of a heralded entanglement source. Nat. Photon., 4, 549-552(2010). https://doi.org/10.1038/nphoton.2010.123

    [8] M. M. Green, J. V. Selinger. Cosmic chirality. Science, 282, 879(1998). https://doi.org/10.1126/science.282.5390.879e

    [9] W. Ma et al. Chiral inorganic nanostructures. Chem. Rev., 117, 8041-8093(2017). https://doi.org/10.1021/acs.chemrev.6b00755

    [10] J. F. Sherson et al. Quantum teleportation between light and matter. Nature, 443, 557-560(2006). https://doi.org/10.1038/nature05136

    [11] W. G. McBride. Thalidomide and congenital abnormalities. The Lancet, 278, 1358(1961). https://doi.org/10.1136/bmj.2.5305.646

    [12] J. McCredie, W. G. McBride. Some congenital abnormalities: possibly due to embryonic peripheral neuropathy. Clin. Radiol., 24, 204-211(1973). https://doi.org/10.1016/S0009-9260(73)80083-2

    [13] Y. Chen et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023). https://doi.org/10.1038/s41586-022-05467-6

    [14] P. Kumar et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature, 615, 418-424(2023). https://doi.org/10.1038/s41586-023-05733-1

    [15] T. Shi et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022). https://doi.org/10.1038/s41467-022-31877-1

    [16] R. M. Kim et al. Enantioselective sensing by collective circular dichroism. Nature, 612, 470-476(2022). https://doi.org/10.1038/s41586-022-05353-1

    [17] A. Qu et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng., 5, 103-113(2021). https://doi.org/10.1038/s41551-020-00634-4

    [18] B. Semnani et al. Spin-preserving chiral photonic crystal mirror. Light Sci. Appl., 9, 23(2020). https://doi.org/10.1038/s41377-020-0256-5

    [19] Q. Zhang et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science, 365, 1475-1478(2019). https://doi.org/10.1126/science.aax5415

    [20] Z. Wu et al. High-performance ultrathin active chiral metamaterials. ACS Nano, 12, 5030-5041(2018). https://doi.org/10.1021/acsnano.8b02566

    [21] M. Hentschel et al. Chiral plasmonics. Sci. Adv., 3, e1602735(2017). https://doi.org/10.1126/sciadv.1602735

    [22] S. Zhang, J. Zhou, Y. S. Park. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun., 3, 942(2012). https://doi.org/10.1038/ncomms1908

    [23] A. Y. Zhu et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7, 17158(2018). https://doi.org/10.1038/lsa.2017.158

    [24] Y. Zhao et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun., 8, 14180(2017). https://doi.org/10.1038/ncomms14180

    [25] C. Wu et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun., 5, 3892(2014). https://doi.org/10.1038/ncomms4892

    [26] Y. Cui et al. Giant chiral optical response from a twisted-arc metamaterial. Nano Lett., 14, 1021-1025(2014). https://doi.org/10.1021/nl404572u

    [27] W. Li et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun., 6, 8379(2015). https://doi.org/10.1038/ncomms9379

    [28] V. K. Valev et al. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater., 25, 2517-2534(2013). https://doi.org/10.1002/adma.201205178

    [29] A. V. Kabashin et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867-871(2009). https://doi.org/10.1038/nmat2546

    [30] Z. Li et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror. Adv. Mater., 32, 1907983(2020). https://doi.org/10.1002/adma.201907983

    [31] Y. H. Huang et al. Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann. Phys., 524, 637-662(2012). https://doi.org/10.1002/andp.201200203

    [32] M. Berry. Making waves in physics. Nature, 403, 21(2000). https://doi.org/10.1038/47364

    [33] J. F. Nye, J. V. Hajnal. The wave structure of monochromatic electromagnetic radiation. Proc. R. Soc. Lond. A, 409, 21-36(1997). https://doi.org/10.1098/rspa.1987.0002

    [34] F. Ding et al. Electrically tunable topological phase transition in non-Hermitian optical MEMS metasurfaces. Sci. Adv., 10, eadl4661(2024). https://doi.org/10.1126/sciadv.adl4661

    [35] K. O’Holleran, M. R. Dennis, M. J. Padgett. Topology of light’s darkness. Phys. Rev. Lett., 102, 143902(2009). https://doi.org/10.1103/PhysRevLett.102.143902

    [36] A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin. Phase jumps and interferometric surface plasmon resonance imaging. Appl. Phys. Lett., 75, 3917-3919(1999). https://doi.org/10.1063/1.125493

    [37] V. G. Kravets et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. Nat. Mater., 12, 304-309(2013). https://doi.org/10.1038/nmat3537

    [38] S. M. Hein, H. Giessen. Retardation-induced phase singularities in coupled plasmonic oscillators. Phys. Rev. B, 91, 205402(2015). https://doi.org/10.1103/PhysRevB.91.205402

    [39] P. Miao et al. Orbital angular momentum microlaser. Science, 353, 464-467(2016). https://doi.org/10.1126/science.aaf8533

    [40] Q. Song et al. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133-1137(2021). https://doi.org/10.1126/science.abj3179

    [41] G. Ermolaev et al. Topological phase singularities in atomically thin high-refractive-index materials. Nat. Commun., 13, 2049(2022). https://doi.org/10.1038/s41467-022-29716-4

    [42] F. Yesilkoy et al. Phase-sensitive plasmonic biosensor using a portable and large field-of-view interferometric microarray imager. Light Sci. Appl., 7, 17152(2018). https://doi.org/10.1038/lsa.2017.152

    [43] A. V. Kabashin, V. G. Kravets, A. N. Grigorenko. Label-free optical biosensing: going beyond the limits. Chem. Soc. Rev., 52, 6554-6585(2023). https://doi.org/10.1039/D3CS00155E

    [44] R. P. Jenkins, S. D. Campbell, D. H. Werner. Establishing exhaustive metasurface robustness against fabrication uncertainties through deep learning. Nanophotonics, 10, 4497-4509(2021). https://doi.org/10.1515/nanoph-2021-0428

    [45] E. W. Wang et al. Robust design of topology-optimized metasurfaces. Opt. Mater. Express, 9, 469-482(2019). https://doi.org/10.1364/OME.9.000469

    [46] S. Fan, W. Suh, J. D. Joannopoulos. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20, 569(2003). https://doi.org/10.1364/JOSAA.20.000569

    [47] Z. Miao et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Phys. Rev. X, 5, 41027(2015). https://doi.org/10.1103/PhysRevX.5.041027

    [48] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [49] J.-H. Park et al. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020). https://doi.org/10.1038/s41567-020-0796-x

    [50] J.-H. Park et al. Hybridized metamaterial platform for nanoscale sensing. Opt. Express, 25, 15590-15598(2017). https://doi.org/10.1364/OE.25.015590

    Jun-Hee Park, Jeongho Ha, Liyi Hsu, Guang Yang, Yeshaiahu Fainman, Alexander V. Sergienko, Abdoulaye Ndao, "Observation of robust subwavelength phase singularity in chiral medium," Adv. Photon. 7, 035001 (2025)
    Download Citation