[1] CHENG Y H, WANG J. A motion image detection method based on the inter-frame difference method[J]. Applied Mechanics & Materials, 2014, 490: 1283-1286.
[2] HE L, GE L. CamShift target tracking based on the combination of inter-frame difference and background difference[C]//2018 37th Chinese Control Conference(CCC). IEEE, 2018: 9461-9465.
[3] Novikov A, Reyes-Pérez P. Optimal multistage sequential hypothesis testing[J]. Journal of Statistical Planning and Inference, 2020, 205: 219-230.
[4] Shamsadin Nejad A, Zaimbashi A. Multistage target detector based on M-ary hypothesis testing approach in multi-channel passive bistatic radars to improve target range resolution[J]. Tabriz Journal of Electrical Engineering, 2019, 49(3): 1141-1152.
[5] FAN X, XU Z, ZHANG J, et al. Infrared dim and small targets detection method based on local energy center of sequential image[J]. Mathematical Problems in Engineering, 2017, 2017: 4572147.
[6] CHEN H, ZHANG H, YANG Y, et al. Small target detection based on infrared image adaptive[J]. International Journal on Smart Sensing & Intelligent Systems, 2015, 8(1): 497-515.
[7] REN X, WANG J, MA T, et al. Infrared dim and small target detection based on three-dimensional collaborative filtering and spatial inversion modeling[J]. Infrared Physics & Technology, 2019, 101: 13-24.
[8] LIU X, ZUO Z. A dim small infrared moving target detection algorithm based on improved three-dimensional directional filtering[C]//Chinese Conference on Image and Graphics Technologies. Springer, Berlin, Heidelberg, 2013: 102-108.
[9] DU P, Hamdulla A. Infrared moving small-target detection using spatial-temporal local difference measure[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(10): 1817-1821.
[10] DENG L, ZHANG J, ZHU H. Infrared moving point target detection using a spatial-temporal filter[J]. Infrared Physics & Technology, 2018, 95: 122-127.
[11] ZHAO B, XIAO S, LU H, et al. Spatial-temporal local contrast for moving point target detection in space-based infrared imaging system[J]. Infrared Physics & Technology, 2018, 95: 53-60.
[12] DENG L, ZHU H, TAO C, et al. Infrared moving point target detection based on spatial-temporal local contrast filter[J]. Infrared Physics & Technology, 2016, 76: 168-173.
[13] CHO J, JUNG Y, KIM D S, et al. Moving object detection based on optical flow estimation and a Gaussian mixture model for advanced driver assistance systems[J]. Sensors, 2019, 19(14): 3217-3231.
[14] ZHANG Y, ZHENG J, ZHANG C, et al. An effective motion object detection method using optical flow estimation under a moving camera[J]. Journal of Visual Communication and Image Representation, 2018, 55: 215-228.
[15] JIAN Q, QIAN C, Wei-Xian Q. A detection algorithm for dim and small infrared target based on the optical flow estimation and the adaptive background suppression[J]. Acta Photonica Sinica, 2011, 40(3): 476-482.
[16] Shin J, Kim H, Kim D, et al. Fast and robust object tracking using tracking failure detection in kernelized correlation filter[J]. Applied Sciences, 2020, 10(2): 713-727.
[17] YU T, MO B, LIU F, et al. Robust thermal infrared object tracking with continuous correlation filters and adaptive feature fusion[J]. Infrared Physics & Technology, 2019, 98: 69-81.
[18] Uzkent B, Rangnekar A, Hoffman M J. Tracking in aerial hyperspectral videos using deep kernelized correlation filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 449-461.
[19] YUAN D, ZHANG X, LIU J, et al. A multiple feature fused model for visual object tracking via correlation filters[J]. Multimedia Tools and Applications, 2019, 78(19): 27271-27290.
[20] MENG Y, MA C, AN W. Infrared object tracking method based on kernel correlation filters[C]//Journal of Physics: Conference Series, 2021, 2035(1): 012038.
[21] YANG X, LI S, YU J, et al. GF-KCF: Aerial infrared target tracking algorithm based on kernel correlation filters under complex interference environment[J]. Infrared Physics & Technology, 2021, 119: 103958.
[22] Hsieh T H, CHOU C L, LAN Y P, et al. Fast and robust infrared image small target detection based on the convolution of layered gradient Kernel[J]. IEEE Access, 2021, 9: 94889-94900.
[23] LI Y, ZHANG Y. Robust infrared small target detection using local steering kernel reconstruction[J]. Pattern Recognition, 2018, 77: 113-125.
[24] Henriques J F, Rui C, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3): 583-596.
[26] LIU S, LIU D, Srivastava G, et al. Overview and methods of correlation filter algorithms in object tracking[J]. Complex & Intelligent Systems, 2020(3): 1895-1917.
[27] WEI Y, YOU X, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226.
[28] HAN J, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616.
[29] YU T, MO B, LIU F, et al. Robust thermal infrared object tracking with continuous correlation filters and adaptive feature fusion[J]. Infrared Physics & Technology, 2019, 98: 69-81.