• Photonics Research
  • Vol. 12, Issue 5, 941 (2024)
Mengting He1, Yujing Cao1, Junjie Lin1, Zhiping Ju2,3..., Botao Wu1 and E Wu1,4,5,6,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
  • 2Photon Technology (Zhejiang) Co., Ltd., Jiaxing 314100, China
  • 3National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200000, China
  • 4Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai 200241, China
  • 5Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
  • 6Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.517734 Cite this Article Set citation alerts
    Mengting He, Yujing Cao, Junjie Lin, Zhiping Ju, Botao Wu, E Wu, "Ultrafast optical modulation of the fluorescence from a single-photon emitter in silicon carbide," Photonics Res. 12, 941 (2024) Copy Citation Text show less
    References

    [1] J. Clark, G. Lanzani. Organic photonics for communications. Nat. Photonics, 4, 438-446(2010).

    [2] D. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [3] B. Hacker, S. Welte, G. Rempe. A photon-photon quantum gate based on a single atom in an optical resonator. Nature, 536, 193-196(2016).

    [4] J. Hwang, M. Pototschnig, R. Lettow. A single-molecule optical transistor. Nature, 460, 76-80(2009).

    [5] D. E. Chang, A. S. Sorensen, E. A. Demler. A single-photon transistor using nanoscale surface plasmons. Nat. Phys., 3, 807-812(2007).

    [6] A. Micheli, A. J. Daley, D. Jaksch. Single atom transistor in a 1D optical lattice. Phys. Rev. Lett., 93, 140408(2004).

    [7] F. He, K.-D. Zhu. Single molecule photonic transistor and router through plasmonic nanocavity. Appl. Phys. B, 129, 65(2023).

    [8] M. Geiselmann, R. Marty, F. Javier García de Abajo. Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre. Nat. Phys., 9, 785-789(2013).

    [9] N. Bar-Gill, L. Pham, A. Jarmola. Solid-state electronic spin coherence time approaching one second. Nat. Commun., 4, 1743(2013).

    [10] D. Farfurnik, A. Jarmola, L. M. Pham. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond. Phys. Rev. B, 92, 060301(2015).

    [11] J. Wang, W. Zhang, J. Zhang. Coherence times of precise depth controlled NV centers in diamond. Nanoscale, 8, 5780-5785(2016).

    [12] O. Chen, J. Zhao, V. P. Chauhan. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater., 12, 445-451(2013).

    [13] W. F. Koehl, B. B. Buckley, F. J. Heremans. Room temperature coherent control of defect spin qubits in silicon carbide. Nature, 479, 84-87(2011).

    [14] H. Seo, A. L. Falk, P. V. Klimov. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun., 7, 12935(2016).

    [15] A. Bourassa, C. P. Anderson, K. C. Miao. Entanglement and control of single quantum memories in isotopically engineered silicon carbide. J. Phys. Chem. Lett., 11, 1675-1681(2020).

    [16] M. Widmann, S. Y. Lee, T. Rendler. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater., 14, 164-168(2014).

    [17] C. P. Anderson, A. Bourassa, K. C. Miao. Electrical and optical control of single spins integrated in scalable semiconductor devices. Science, 366, 1225-1230(2019).

    [18] L. Li, X. Guo, P. B. Ding. Ultrafast all-optical switching in the visible spectrum with 6H silicon carbide. ACS Photonics, 8, 2940-2946(2021).

    [19] S. Castelletto, M. Barbiero, M. Charnley. Imaging with nanometer resolution using optically active defects in silicon carbide. Phys. Rev. Appl., 14, 034021(2020).

    [20] J. Y. Zhou, Q. Li, Z. H. Hao. Plasmonic-enhanced bright single spin defects in silicon carbide membranes. Nano Lett., 23, 4334-4343(2023).

    [21] T. Nakanuma, K. Tahara, K. Kutsuki. Control on the density and optical properties of color centers at SiO2/SiC interfaces by oxidation and annealing. Appl. Phys. Lett., 123, 102102(2023).

    [22] J. F. Wang, Q. Li, F. F. Yan. On-demand generation of single silicon vacancy defects in silicon carbide. ACS Photonics, 6, 1736-1743(2019).

    [23] J. F. Wang, Z. H. Liu, F. F. Yan. Experimental optical properties of single nitrogen vacancy centers in silicon carbide at room temperature. ACS Photonics, 7, 1611-1616(2020).

    [24] A. Lohrmann, S. Castelletto, J. R. Klein. Activation and control of visible single defects in 4H-, 6H-, and 3C-SiC by oxidation. Appl. Phys. Lett., 108, 021107(2016).

    [25] M. T. He, Z. P. Ju, Y. X. Xue. Bright single-photon emitters in cubic silicon carbide. IEEE J. Sel. Top. Quantum Electron., 30, 0100106(2023).

    [26] E. Neu, M. Fischer, S. Gsell. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys. Rev. B, 84, 5211-5220(2011).

    [27] N. R. Jungwirth, B. Calderon, Y. Ji. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett., 16, 6052-6057(2016).

    [28] P. Qian, Y. P. Zhai, J. Hu. Multicolor-illuminated charge-state dynamics of the nitrogen-vacancy center in diamond. Phys. Rev. A, 106, 033506(2023).

    [29] D. A. Hopper, R. R. Grote, A. L. Exarhos. Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond. Phys. Rev. B, 94, 241201(2016).

    [30] R. Nelz, J. Görlitz, D. Herrmann. Toward wafer-scale diamond nano- and quantum technologies. APL Materials, 7, 011108(2019).

    [31] M. Albert, A. Dantan, M. Drewsen. Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals. Nat. Photonics, 5, 633-636(2011).

    [32] X. Su, J. S. Tang, K. Y. Xia. Nonlinear dissipation-induced photon blockade. Phys. Rev. A, 106, 063707(2022).

    [33] A. V. Zasedatelev, A. V. Baranikov, D. Sannikov. Single-photon nonlinearity at room temperature. Nature, 597, 493-497(2021).

    [34] V. Westphal, S. W. Hell. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett., 94, 143903(2005).

    [35] S. T. Hell. Toward fluorescence nanoscopy. Nat. Biotechnol., 21, 1347-1355(2003).

    [36] I. A. Walmsley. Quantum optics: science and technology in a new light. Science, 348, 525-530(2015).

    [37] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics-photon by photon. Nat. Photonics, 8, 685-694(2014).

    Mengting He, Yujing Cao, Junjie Lin, Zhiping Ju, Botao Wu, E Wu, "Ultrafast optical modulation of the fluorescence from a single-photon emitter in silicon carbide," Photonics Res. 12, 941 (2024)
    Download Citation