[2] HYATT N C, OJOVAN M I. Special issue: materials for nuclear waste immobilization[J]. Materials, 2019, 12(21): 3611.
[3] OJOVAN M I, STEINMETZ H J. Approaches to disposal of nuclear waste[J]. Energies, 2022, 15(20): 7804.
[4] ABU-KHADER M M. Recent advances in nuclear power: a review[J]. Progress in Nuclear Energy, 2009, 51(2): 225-235.
[6] YANG K, WANG Y C, LEI P H, et al. Chemical durability and surface alteration of lanthanide zirconates (A2Zr2O7: a=La-Yb)[J]. Journal of the European Ceramic Society, 2021, 41(12): 6018-6028.
[7] SINGH B K, HAFEEZ M A, KIM H, et al. Inorganic waste forms for efficient immobilization of radionuclides[J]. ACS ES&T Engineering, 2021, 1(8): 1149-1170.
[8] SENGUPTA P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix: present status and future challenges[J]. Journal of Hazardous Materials, 2012, 235/236: 17-28.
[9] JAFAR M, SENGUPTA P, ACHARY S N, et al. Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)-Sm2Ti2O7 (pyrochlore) system[J]. Journal of the European Ceramic Society, 2014, 34(16): 4373-4381.
[10] EWING R C, WEBER W J, LIAN J. Nuclear waste disposal—pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides[J]. Journal of Applied Physics, 2004, 95(11): 5949-5971.
[11] LIAN J, ZU X T, KUTTY K V G, et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore[J]. Physical Review B-Condensed Matter and Materials Physics, 2002, 66(5): 541081-541085.
[12] WILLIFORD R E, WEBER W J, DEVANATHAN R, et al. Effects of cation disorder on oxygen vacancy migration in Gd2Ti2O7[J]. Journal of Electroceramics, 1999, 3(4): 409-424.
[13] HEVESY G, LEVI H. Action of slow neutrons on rare earth elements[J]. Nature, 1936, 137(3457): 185-185.
[14] KHOKHLOV V F, YASHKIN P N, SILIN D I, et al. Neutron capture therapy with Gd-DTPA in tumor-bearing rats[M]//Cancer Neutron Capture Therapy. Boston, MA: Springer, 1996: 865-869.
[15] XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward[J]. Journal of Advanced Ceramics, 2021, 10(3): 385-441.
[16] YE Y F, WANG Q, LU J, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362.
[17] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nature Reviews Materials, 2020, 5(4): 295-309.
[18] CONNELLY A J, TRAVIS K P, HAND R J, et al. Composition-structure relationships in simplified nuclear waste glasses: mixed alkali borosilicate glasses[J]. Journal of the American Ceramic Society, 2011, 94(1): 151-159.
[19] WU J X, ZHANG M, LI Z Q, et al. High-entropy (Sm0.2Eu0.2Gd0.2Dy0.2Er0.2)2Hf2O7 ceramic with superb resistance to radiation-induced amorphization[J]. Journal of Materials Science & Technology, 2023, 155: 1-9.
[20] KHOLGHY M, KHARATYAN S, EDRIS H. SHS/PHIP of ceramic composites using ilmenite concentrate[J]. Journal of Alloys and Compounds, 2010, 502(2): 491-494.
[21] WANG J, WANG J X, ZHANG Y B, et al. Order-disorder phase structure, microstructure and aqueous durability of (Gd, Sm)2(Zr, Ce)2O7 ceramics for immobilizing actinides[J]. Ceramics International, 2019, 45(14): 17898-17904.
[22] LU X R, FAN L, SHU X Y, et al. Phase evolution and chemical durability of Co-doped Gd2Zr2O7 ceramics for nuclear waste forms[J]. Ceramics International, 2015, 41(5): 6344-6349.
[23] PENG L, ZHANG K B, YIN D, et al. Self-propagating synthesis, mechanical property and aqueous durability of Gd2Ti2O7 pyrochlore[J]. Ceramics International, 2016, 42(16): 18907-18913.
[24] SHU X Y, LU X R, FAN L, et al. Design and fabrication of Gd2Zr2O7-based waste forms for U3O8 immobilization in high capacity[J]. Journal of Materials Science, 2016, 51(11): 5281-5289.
[25] JAFAR M, PHAPALE S B, MANDAL B P, et al. Effect of temperature on phase evolution in Gd2Zr2O7: a potential matrix for nuclear waste immobilization[J]. Journal of Alloys and Compounds, 2021, 867: 159032.
[26] SHUKLA R, VASUNDHARA K, KRISHNA P S R, et al. High temperature structural and thermal expansion behavior of pyrochlore-type praseodymium zirconate[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15672-15678.
[27] WANG Z J, ZHOU G H, QIN X P, et al. Fabrication of LaGdZr2O7 transparent ceramic[J]. Journal of the European Ceramic Society, 2013, 33(4): 643-646.
[28] LUMPKIN G R, PRUNEDA M, RIOS S, et al. Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds[J]. Journal of Solid State Chemistry, 2007, 180(4): 1512-1518.
[29] CHEN S Z, LIU X D, SHU X Y, et al. Rapid synthesis and chemical durability of Gd2Zr2-Ce O7 via SPS for nuclear waste forms[J]. Ceramics International, 2018, 44(16): 20306-20310.
[30] MA,CZKA M, HANUZA J, HERMANOWICZ K, et al. Temperature-dependent Raman scattering studies of the geometrically frustrated pyrochlores Dy2Ti2O7, Gd2Ti2O7 and Er2Ti2O7[J]. Journal of Raman Spectroscopy, 2008, 39(4): 537-544.
[31] VANDENBORRE M T, HUSSON E, CHATRY J P, et al. Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields[J]. Journal of Raman Spectroscopy, 1983, 14(2): 63-71.
[32] KONG L G, KARATCHEVTSEVA I, GREGG D J, et al. Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 3273-3285.
[33] HASANZADEH E M, NAJI H, MARJERRISON C A, et al. Microstructural characterization and phase analysis of new pyrochlore-type mixed metal oxides RESmTi2O7 (RE=Gd, Er) by X-ray powder diffraction using Rietveld refinement method and spectroscopic studies[J]. Ceramics International, 2022, 48(10): 13651-13658.
[34] JANA Y M, HALDER P, ALI BISWAS A, et al. FT-IR and Raman vibrational spectroscopic studies of R2FeSbO7 (R3+=Y, Dy, Gd, Bi) pyrochlores[J]. Vibrational Spectroscopy, 2016, 84: 74-82.
[35] WUENSCH B J, EBERMAN K W. Order-disorder phenomena in A2B2O7 pyrochlore oxides[J]. Journal of Metals, 2000, 52(7): 19-21.
[36] BURROUGHS P, HAMNETT A, ORCHARD A F, et al. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium[J]. Journal of the Chemical Society, Dalton Transactions, 1976(17): 1686-1698.
[37] ZHONG F L, SHI L Q, ZHAO J W, et al. Ce incorporated pyrochlore Pr2Zr2O7 solid electrolytes for enhanced mild-temperature NO2 sensing[J]. Ceramics International, 2017, 43(15): 11799-11806.
[38] LIAO X, ZHANG Y, HILL M, et al. Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride[J]. Applied Catalysis A: General, 2014, 488: 256-264.
[39] ZHANG F, XIE Y X, ZHANG H M, et al. New simultaneously doped pyrochlore compounds (Ca1-xCex)2(ZrxNb1-x)2O7 negative temperature coefficient ceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10339-10348.
[40] WANG L L, LI J B, XIE H, et al. Solubility, structure transition and chemical durability of Th-doped Nd2Zr2O7 pyrochlore[J]. Progress in Nuclear Energy, 2021, 137: 103774.
[41] YANG J X, TAN L, JI P C, et al. Rapid preparation of Gd2Zr2-xCexO7 waste forms by flash sintering and their chemical durability[J]. Journal of the European Ceramic Society, 2023, 43(11): 4950-4957.
[42] WANG J, WANG J X, ZHANG Y B, et al. Flux synthesis and chemical stability of Nd and Ce Co-doped (Gd1-xNdx)2(Zr1-xCex)2O7 (0≤x≤1) pyrochlore ceramics for nuclear waste forms[J]. Ceramics International, 2017, 43(18): 17064-17070.
[43] ZHOU L, LI F, LIU J X, et al. High-entropy A2B2O7-type oxide ceramics: a potential immobilising matrix for high-level radioactive waste[J]. Journal of Hazardous Materials, 2021, 415: 125596.
[44] ZHAO Z F, XIANG H M, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. Journal of Materials Science & Technology, 2019, 35(11): 2647-2651.