• Chinese Journal of Lasers
  • Vol. 47, Issue 5, 0500007 (2020)
Ming Xin*
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202047.0500007 Cite this Article Set citation alerts
    Ming Xin. High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities[J]. Chinese Journal of Lasers, 2020, 47(5): 0500007 Copy Citation Text show less
    References

    [1] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).

    [2] Jones D J. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-639(2000).

    [3] Holzwarth R, Udem T, Hänsch T W et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 85, 2264-2267(2000).

    [4] Altarelli M, Brinkmann R, Chergui M et al. XFEL: the European X-ray free-electron laser Notkestrasse,[R]. Hamburg: DESY(2006).

    [5] Allaria E, Appio R, Badano L et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet[J]. Nature Photonics, 6, 699-704(2012).

    [6] Milne C J, Schietinger T, Aiba M et al. SwissFEL: the swiss X-ray free electron laser[J]. Applied Sciences, 7, 720(2017).

    [7] Emma P, Akre R, Arthur J et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 4, 641-647(2010).

    [8] Stohr J. Linac coherent light source II (LCLS-II) conceptual design report Washington, D.C[R]. USDOE Office of Science(2011).

    [9] Huang Z R, Lindau I. SACLA hard-X-ray compact FEL[J]. Nature Photonics, 6, 505-506(2012).

    [10] Zhao Z T, Wang D, Gu Q et al. SXFEL: a soft X-ray free electron laser in China[J]. Synchrotron Radiation News, 30, 29-33(2017).

    [11] Zhao Z T, Wang D, Yin L X et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 46, 0100004(2019).

    [12] Prat E, Reiche S. Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses[J]. Physical Review Letters, 114, 244801(2015).

    [13] Kupitz C, Basu S, Grotjohann I et al. Serial time-resolved crystallography of photosystem Ⅱ using a femtosecond X-ray laser[J]. Nature, 513, 261-265(2014).

    [14] Öström H, Öberg H, Xin H et al. Probing the transition state region in catalytic CO oxidation on Ru[J]. Science, 347, 978-982(2015).

    [15] Calegari F, Ayuso D, Trabattoni A et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses[J]. Science, 346, 336-339(2014).

    [16] Son S K, Young L, Santra R. Impact of hollow-atom formation on coherent X-ray scattering at high intensity[J]. Physical Review A, 83, 033402(2011).

    [17] Hau-Riege S P. Photoelectron dynamics in X-ray free-electron-laser diffractive imaging of biological samples[J]. Physical Review Letters, 108, 238101(2012).

    [18] Leng Y X. Shanghai superintense ultrafast laser facility[J]. Chinese Journal of Lasers, 46, 0100001(2019).

    [19] Mourou G, Tajima T. More intense, shorter pulses[J]. Science, 331, 41-42(2011).

    [20] Betti R, Hurricane O A. Inertial-confinement fusion with lasers[J]. Nature Physics, 12, 435-448(2016).

    [21] Mourou G, Brocklesby B, Tajima T et al. The future is fibre accelerators[J]. Nature Photonics, 7, 258-261(2013).

    [22] Castelvecchi D. Black hole pictured for first time: in spectacular detail[J]. Nature, 568, 284-285(2019).

    [23] Middelberg E, Bach U. High resolution radio astronomy using very long baseline interferometry[J]. Reports on Progress in Physics, 71, 066901(2008).

    [24] Dewdney P E, Hall P J, Schilizzi R T et al. The square kilometre array[J]. Proceedings of the IEEE, 97, 1482-1496(2009).

    [25] Dravins D, Lagadec T, Nuñez P D. Optical aperture synthesis with electronically connected telescopes[J]. Nature Communications, 6, 6852(2015).

    [26] He Y B. Baldwin K G H, Orr B J, et al. Long-distance telecom-fiber transfer of a radio-frequency reference for radio astronomy[J]. Optica, 5, 138-146(2018).

    [27] Haus H A, Mecozzi A. Noise of mode-locked lasers[J]. IEEE Journal of Quantum Electronics, 29, 983-996(1993).

    [28] Scott R P, Langrock C, Kolner B H. High-dynamic-range laser amplitude and phase noise measurement techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 641-655(2001).

    [29] Quinlan F, Fortier T M, Jiang H et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains[J]. Nature Photonics, 7, 290-293(2013).

    [30] Sun W L, Quinlan F, Fortier T et al. Broadband noise limit in the photodetection of ultralow jitter optical pulses[J]. Physical Review Letters, 113, 203901(2014).

    [31] Jiang L A, Wong S T, Grein M E et al. Measuring timing jitter with optical cross correlations[J]. IEEE Journal of Quantum Electronics, 38, 1047-1052(2002).

    [32] Schibli T R, Kim J, Kuzucu O et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Optics Letters, 28, 947-949(2003).

    [33] Kim J, Chen J, Cox J et al. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers[J]. Optics Letters, 32, 3519-3521(2007).

    [34] Kärtner F X, Wong F. -02-05[2020-01-01]. https:∥patentscope.wipo.int/search/en/detail.jsf?docId=WO2008153594.(2010).

    [35] Xin M, Şafak K, Kärtner F X. Ultra-precise timing and synchronization for large-scale scientific instruments[J]. Optica, 5, 1564-1578(2018).

    [36] Diels J C, Rudolph W[M]. Ultrashort laser pulse phenomena(2006).

    [37] Cox J A, Nejadmalayeri A H, Kim J et al. Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers[J]. Optics Letters, 35, 3522-3524(2010).

    [38] Kim T K, Song Y J, Jung K et al. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers[J]. Optics Letters, 36, 4443-4445(2011).

    [39] Song Y J, Kim C, Jung K et al. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime[J]. Optics Express, 19, 14518-14525(2011).

    [40] Benedick A J, Fujimoto J G, Kärtner F X. Optical flywheels with attosecond jitter[J]. Nature Photonics, 6, 97-100(2012).

    [41] Şafak K, Xin M, Zhang Q et al. Jitter analysis of timing-distribution and remote-laser synchronization systems[J]. Optics Express, 24, 21752-21766(2016).

    [42] Li H, Chen L J. Cheng H P H, et al. Remote two-color optical-to-optical synchronization between two passively mode-locked lasers[J]. Optics Letters, 39, 5325-5328(2014).

    [43] Zhou G J, Xin M, Kaertner F X et al. Timing jitter of Raman solitons[J]. Optics Letters, 40, 5105-5108(2015).

    [44] Hua Y, Zhou G J, Liu W et al. Tightly synchronized two-color femtosecond source based on low-noise SPM-enabled spectral selection. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California. Washington, D.C.: OSA, JTh2A, 162(2018).

    [45] Nejadmalayeri A H. Wong F N C, Roberts T D, et al. Guided wave optics in periodically poled KTP: quadratic nonlinearity and prospects for attosecond jitter characterization[J]. Optics Letters, 34, 2522-2524(2009).

    [46] Callahan P T, Safak K, Battle P et al. Fiber-coupled balanced optical cross-correlator using PPKTP waveguides[J]. Optics Express, 22, 9749-9758(2014).

    [47] Jones B, Hawthorne T, Battle P et al. Development of a waveguide-based optical cross-correlator for attosecond timing synchronization. [C]∥International Conference on Ultrafast Optics(UFO XI). [S.l.: s.n.](2017).

    [48] Giovannetti V, Lloyd S. MacCone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 412, 417-419(2001).

    [49] Chen Y F, Jiang J, Jones D J. Remote distribution of a mode-locked pulse train with sub 40-as jitter[J]. Optics Express, 14, 12134-12144(2006).

    [50] Hou D, Lee C C, Yang Z et al. Timing jitter characterization of mode-locked lasers with <1 zs/ Hz resolution using a simple optical heterodyne technique[J]. Optics Letters, 40, 2985-2988(2015).

    [51] Kwon D, Jeon C G, Shin J et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs[J]. Scientific Reports, 7, 40917(2017).

    [52] Kim J, Kärtner F X, Ludwig F. Balanced optical-microwave phase detectors for optoelectronic phase-locked loops[J]. Optics Letters, 31, 3659-3661(2006).

    [53] Kim J, Cox J A, Chen J et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2, 733-736(2008).

    [54] Peng M Y, Kalaydzhyan A, Kärtner F X. Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization[J]. Optics Express, 22, 27102-27111(2014).

    [55] Xin M, Şafak K, Peng M Y et al. Attosecond precision multi-kilometer laser-microwave network[J]. Light: Science & Applications, 6, e16187(2017).

    [56] ŞafakK, Cheng H P H, Dai A, et al. Balanced optical-microwave phase detector for 800-nm pulsed lasers with sub-femtosecond resolution[C]∥39th Free Electron Laser Conference (FEL). [S.l.]: JACoW Publishing, 2019.

    [57] Jung K, Kim J. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers[J]. Optics Letters, 37, 2958-2960(2012).

    [58] Yang H, Han B, Shin J et al. 10-fs-level synchronization of photocathode laser with RF-oscillator for ultrafast electron and X-ray sources[J]. Scientific Reports, 7, 39966(2017).

    [59] Endo M, Shoji T D, Schibli T R. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators[J]. Scientific Reports, 8, 4388(2018).

    [60] Jeon C G, Na Y J, Lee B W et al. Simple-structured, subfemtosecond-resolution optical-microwave phase detector[J]. Optics Letters, 43, 3997-4000(2018).

    [61] Lessing M, Margolis H S. Brown C T A, et al. Suppression of amplitude-to-phase noise conversion in balanced optical-microwave phase detectors[J]. Optics Express, 21, 27057-27062(2013).

    [62] Baynes F, Quinlan F, Fortier T et al. Attosecond timing in optical-to-electrical conversion[J]. Optica, 2, 141-146(2014).

    [63] Bouchand R, Nicolodi D, Xie X P et al. Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses[J]. Optics Express, 25, 12268-12281(2017).

    [64] Ding Y, Decker F J, Emma P et al. Femtosecond X-ray pulse characterization in free-electron lasers using a cross-correlation technique[J]. Physical Review Letters, 109, 254802(2012).

    [65] Cavalieri A L, Fritz D M, Lee S H et al[J]. Clocking femtosecond X rays Physical Review Letters, 94, 114801.

    [66] Tavella F, Stojanovic N, Geloni G et al. Few-femtosecond timing at fourth-generation X-ray light sources[J]. Nature Photonics, 5, 162-165(2011).

    [67] Gahl C, Azima A, Beye M et al. A femtosecond X-ray/optical cross-correlator[J]. Nature Photonics, 2, 165-169(2008).

    [68] Harmand M, Coffee R, Bionta M R et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers[J]. Nature Photonics, 7, 215-218(2013).

    [69] Grguraš I, Maier A R, Behrens C et al. Ultrafast X-ray pulse characterization at free-electron lasers[J]. Nature Photonics, 6, 852-857(2012).

    [70] Schulz S, Grguraš I, Behrens C et al. Femtosecond all-optical synchronization of an X-ray free-electron laser[J]. Nature Communications, 6, 5938(2015).

    [71] Fang S B, Wei Z Y. Sub-optical-cycle coherent waveform synthesis[J]. Acta Optica Sinica, 39, 0126006(2019).

    [72] Ge A C, Liu B W, Chen W et al. Effects of parent pulse parameters on quality of femtosecond pulse coherent synthesis[J]. Chinese Journal of Lasers, 46, 0505028(2019).

    [73] Cinquegrana P, Cleva S, Demidovich A et al. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser[J]. Physical Review Special Topics-Accelerators and Beams, 17, 040702(2014).

    [74] Csatari Divall M, Mutter P, Divall E J et al. Femtosecond resolution timing jitter correction on a TW scale Ti∶sapphire laser system for FEL pump-probe experiments[J]. Optics Express, 23, 29929-29939(2015).

    [75] Casanova A. D'Acremont Q, Santarelli G, et al. Ultrafast amplifier additive timing jitter characterization and control[J]. Optics Letters, 41, 898-900(2016).

    [76] Pergament M, Palmer G, Kellert M et al. Versatile optical laser system for experiments at the European X-ray free-electron laser facility[J]. Optics Express, 24, 29349-29359(2016).

    [77] Valente S, Calendron A L, Meier J et al. Timing stabilization of solid-state, Yb-based laser system. [C]∥Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California. Washington, D.C.: OSA, JTh2A, 140(2018).

    [78] Kang J, Shin J, Kim C et al. Few-femtosecond-resolution characterization and suppression of excess timing jitter and drift in indoor atmospheric frequency comb transfer[J]. Optics Express, 22, 26023-26031(2014).

    [79] Sun F Y, Hou D, Zhang D N et al. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction[J]. Optics Express, 25, 21312-21320(2017).

    [80] Giorgetta F R, Swann W C, Sinclair L C et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 7, 434-438(2013).

    [81] Lee J, Kim Y J, Lee K et al. Time-of-flight measurement with femtosecond light pulses[J]. Nature Photonics, 4, 716-720(2010).

    [82] Deschênes J D, Sinclair L C, Giorgetta F R et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physical Review X, 6, 021016(2016).

    [83] Bergeron H, Sinclair L C, Swann W C et al. Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path[J]. Optica, 3, 441-447(2016).

    [84] Sinclair L C, Bergeron H, Swann W C et al. Comparing optical oscillators across the air to milliradians in phase and 10 -17 in frequency[J]. Physical Review Letters, 120, 050801(2018).

    [85] Coddington I, Swann W C, Lorini L et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter[J]. Nature Photonics, 1, 283-287(2007).

    [86] Foreman S M. Ludlow A D, de Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10 -17[J]. Physical Review Letters, 99, 153601(2007).

    [87] Lopez O, Amy-Klein A, Lours M et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B, 98, 723-727(2010).

    [88] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 336, 441-444(2012).

    [89] Wilcox R, Byrd J M, Doolittle L et al. Stable transmission of radio frequency signals on fiber links using interferometric delay sensing[J]. Optics Letters, 34, 3050-3052(2009).

    [90] Glownia J M, Cryan J, Andreasson J et al. Time-resolved pump-probe experiments at the LCLS[J]. Optics Express, 18, 17620-17630(2010).

    [91] Kim J, Chen J, Zhang Z et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator[J]. Optics Letters, 32, 1044-1046(2007).

    [92] Peng M Y, Callahan P T, Nejadmalayeri A H et al. Long-term stable, sub-femtosecond timing distribution via a 12-km polarization-maintaining fiber link: approaching 10 -21 link stability[J]. Optics Express, 21, 19982-19989(2013).

    [93] Şafak K. Cheng H P H, Dai A N, et al. Single-mode fiber based pulsed-optical timing link with few-femtosecond precision in SwissFEL. [C]∥Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California. Washington, D.C.: OSA, JTh2A, 100(2019).

    [94] Şafak K, Xin M, Callahan P T et al. All fiber-coupled, long-term stable timing distribution for free-electron lasers with few-femtosecond jitter[J]. Structural Dynamics, 2, 041715(2015).

    [95] Xin M, Şafak K, Peng M Y et al. Sub-femtosecond precision timing synchronization systems[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 907, 169-181(2018).

    [96] Gordon J P, Haus H A. Random walk of coherently amplified solitons in optical fiber transmission[J]. Optics Letters, 11, 665-667(1986).

    [97] Xin M, Şafak K, Peng M Y et al. One-femtosecond, long-term stable remote laser synchronization over a 35-km fiber link[J]. Optics Express, 22, 14904-14912(2014).

    [98] Jung K, Shin J, Kang J et al. Frequency comb-based microwave transfer over fiber with 7×10 -19 instability using fiber-loop optical-microwave phase detectors[J]. Optics Letters, 39, 1577-1580(2014).

    [99] Xin M, Safak K, Peng M Y et al. Breaking the femtosecond barrier in multi-kilometer timing synchronization systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 97-108(2017).

    [100] Şafak K, Xin M, Peng M Y et al. Synchronous multi-color laser network with daily sub-femtosecond timing drift[J]. Scientific Reports, 8, 11948(2018).

    [101] Wang W T, Kalaydzhyan A, Şafak K et al. High precision synchronization of a large-scale microwave network over stabilized fiber links. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California. Washington, D.C.: OSA, SM4H, 5(2016).

    [102] Kalaydzhyan A, Peng M Y, Xin M et al. Optical-to-microwave synchronization with sub-femtosecond daily drift. [C]∥2016 European Frequency and Time Forum (EFTF), April 4-7, 2016, York, United Kingdom. New York: IEEE, 7477846(2016).

    [103] Kim H, Qin P, Song Y J et al. Sub-20-attosecond timing jitter mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 260-267(2014).

    [104] Carter S J, Drummond P D, Reid M D et al. Squeezing of quantum solitons[J]. Physical Review Letters, 58, 1841-1844(1987).

    [105] Abbott B P, Abbott R, Abbott T D et al. Observation of gravitational waves from a binary black hole merger[J]. Physics Review Letters, 116, 061102(2016).

    [106] Amaro-Seoane P, Aoudia S, Babak S et al. Low-frequency gravitational-wave science with eLISA/NGO[J]. Classical and Quantum Gravity, 29, 124016(2012).

    Ming Xin. High-Precision Timing Synchronization Techniques in Large-Scale Scientific Facilities[J]. Chinese Journal of Lasers, 2020, 47(5): 0500007
    Download Citation