• Journal of Electronic Science and Technology
  • Vol. 22, Issue 2, 100249 (2024)
Dhiah Al-Shammary1, Mustafa Noaman Kadhim1,*, Ahmed M. Mahdi1, Ayman Ibaida2, and Khandakar Ahmedb2
Author Affiliations
  • 1College of Computer Science and Information Technology, University of Al-Qadisiyah, Al Diwaniyah, 58001, Iraq
  • 2Intelligent Technology Innovation Lab, Victoria University, Melbourne, 3011, Australia
  • show less
    DOI: 10.1016/j.jnlest.2024.100249 Cite this Article
    Dhiah Al-Shammary, Mustafa Noaman Kadhim, Ahmed M. Mahdi, Ayman Ibaida, Khandakar Ahmedb. Efficient ECG classification based on Chi-square distance for arrhythmia detection[J]. Journal of Electronic Science and Technology, 2024, 22(2): 100249 Copy Citation Text show less

    Abstract

    This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor (KNN), random forest (RF), decision tree (DT), and support vector machine (SVM) for arrhythmia detection. The proposed classifier leverages the Chi-square distance as a primary metric, providing a specialized and original approach for precise arrhythmia detection. To optimize feature selection and refine the classifier’s performance, particle swarm optimization (PSO) is integrated with the Chi-square distance as a fitness function. This synergistic integration enhances the classifier’s capabilities, resulting in a substantial improvement in accuracy for arrhythmia detection. Experimental results demonstrate the efficacy of the proposed method, achieving a noteworthy accuracy rate of 98% with PSO, higher than 89% achieved without any previous optimization. The classifier outperforms machine learning (ML) and deep learning (DL) techniques, underscoring its reliability and superiority in the realm of arrhythmia classification. The promising results render it an effective method to support both academic and medical communities, offering an advanced and precise solution for arrhythmia detection in electrocardiogram (ECG) data.
    $ {M}_{i}=\frac{{X}_{i}-\mathrm{m}\mathrm{i}\mathrm{n}\left({X}_{i}\right)}{\mathrm{max}\left({X}_{i}\right)-\mathrm{min}\left({X}_{i}\right)} $(1)

    View in Article

    $ {L}_{i}\left(t+1\right)={L}_{i}\left(t\right)+{V}_{i}\left(t\right) $(2)

    View in Article

    $ {V}_{i}\left(t+1\right)=wL\left(t\right)+{C}_{1}{R}_{1}\left(\mathrm{p}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}-{L}_{i}\right)+{C}_{2}{R}_{2}\left(\mathrm{g}\mathrm{b}\mathrm{e}\mathrm{s}\mathrm{t}-{L}_{i}\right) $(3)

    View in Article

    $ {\mathrm{Fitness}}\; {\mathrm{Function}} = \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{t}\left(\mathbf{F}{\mathrm{,}}\;\mathbf{M}\right){\mathrm{.}} $(4)

    View in Article

    $ \mathrm{D}\mathrm{i}\mathrm{s}\mathrm{t}=\sum _{i=1}^{D}\frac{{({m}_{i}-{f}_{i})}^{2}}{{m}_{i}+{f}_{i}+\epsilon } $(5)

    View in Article

    $ \mathrm{P}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}=\frac{\mathrm{T}\mathrm{P}}{\mathrm{T}\mathrm{P}+\mathrm{F}\mathrm{P}}{\mathrm{.}} $(6)

    View in Article

    $ \mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}=\frac{\mathrm{T}\mathrm{P}}{\mathrm{T}\mathrm{P}+\mathrm{F}\mathrm{N}}{\mathrm{.}} $(7)

    View in Article

    $ \mathrm{F}1 \text{-}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}=\frac{2\times \left(\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\times \mathrm{P}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\right)}{\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}+\mathrm{P}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}}{\mathrm{.}} $(8)

    View in Article

    $ \mathrm{A}\mathrm{c}\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{y}=\frac{\mathrm{T}\mathrm{P}+\mathrm{T}\mathrm{N}}{\mathrm{T}\mathrm{P}+\mathrm{T}\mathrm{N}+\mathrm{F}\mathrm{N}+\mathrm{F}\mathrm{P}}{\mathrm{.}} $(9)

    View in Article

    Dhiah Al-Shammary, Mustafa Noaman Kadhim, Ahmed M. Mahdi, Ayman Ibaida, Khandakar Ahmedb. Efficient ECG classification based on Chi-square distance for arrhythmia detection[J]. Journal of Electronic Science and Technology, 2024, 22(2): 100249
    Download Citation