• Semiconductor Optoelectronics
  • Vol. 43, Issue 1, 12 (2022)
ZHOU Pei1,2, LI Nianqiang2, and PAN Shilong1,*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2022012901 Cite this Article
    ZHOU Pei, LI Nianqiang, PAN Shilong. Wideband Radar Signal Generation and Application Based on An Optical Injected Semiconductor Laser[J]. Semiconductor Optoelectronics, 2022, 43(1): 12 Copy Citation Text show less
    References

    [1] Skolnik M I. Introduction to Radar[M]. New York: Mc Graw Hill Professional, 1962: 1-29.

    [2] Pan S, Zhang Y. Microwave photonic radars[J]. J. Lightwave Technol., 2020, 38(19): 5450-5484.

    [3] Ghelfi P, Laghezza F, Scotti F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507: 341-345.

    [4] Zhang F, Guo Q, Wang Z, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Opt. Express, 2017, 25(14): 16274-16281.

    [5] Li R, Li W, Ding M, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Opt. Express, 2017, 25(13): 14334-14340.

    [6] Li X, Zhao S, Zhu Z, et al. Photonic generation of frequency and bandwidth multiplying dual-chirp microwave waveform[J]. IEEE Photon. J., 2017, 9(3): 1-14.

    [7] Wang A, Wo J, Luo X, et al. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information[J]. Opt. Express, 2018, 26(16): 20708-20717.

    [8] Li Y, Rashidinejad A, Wun J M, et al. Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9mm range resolution[J]. Optica, 2014, 1(6): 446-454.

    [9] Moslemi P, Rochette M, Chen L R. Simultaneous generation of WDM chirped microwave waveforms using integrated spectral shapers in silicon photonics[J]. J. Lightwave Technol., 2018, 36(23): 5498-5504.

    [10] Zhang H, Zou W, Chen J. Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion[J]. Opt. Lett., 2015, 40(6): 1085-1088.

    [11] Li W, Yao J. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop[J]. J. Lightwave Technol., 2014, 32(20): 3573-3579.

    [12] Zhang Y, Ye X, Guo Q, et al. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation[J]. J. Lightwave Technol., 2017, 35(10): 1821-1829.

    [13] Simpson T, Liu J M, Huang K F, et al. Nonlinear dynamics induced by external optical injection in semiconductor lasers[J]. Quantum Semiclassical Opt., 1997, 9(5): 765-784.

    [14] Hwang S K, Liu J M, White J K, et al. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection[J]. IEEE J. Sel. Topics Quantum Electron., 1997, 9(5): 765-784.

    [15] Chan S C, Hwang S K, Liu J M. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser[J]. Opt. Express, 2007, 15(22): 14921-14935.

    [16] Chan S C, Hwang S K, Liu J M. Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser[J]. Opt. Lett., 2006, 31(15): 2254-2256.

    [17] Qi X Q, Liu J M. Photonic microwave applications of the dynamics of semiconductor lasers[J]. IEEE J. Sel. Topics Quantum Electron., 2011, 17(5): 1198-1211.

    [18] Chan S C, Liu J M. Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics[J]. IEEE J. Sel. Topics Quantum Electron., 2004, 10(5): 1025-1032.

    [19] Suelzer J S, Simpson T B, Devgan P, et al. Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback[J]. Opt. Lett., 2017, 42(16): 3181-3184.

    [20] Zhou P, Zhang F, Zhang D, et al. Performance enhancement of an optically-injected-semiconductor-laser-based optoelectronic oscillator by subharmonic microwave modulation[J]. Opt. Lett., 2018, 43(21): 5439-5442.

    [21] Zhou P, Zhang F, Ye X, et al. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser[J]. IEEE Photon. J., 2016, 8(6): 5501909.

    [22] Usechak N G, Suelzer J S, Haefner J W. High-speed wideband voltage-controlled oscillator via an injection-locked laser[J]. IEEE Photon. Technol. Lett., 2017, 29(13): 1132-1135.

    [23] Zhou P, Zhang F, Guo Q, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Opt. Express, 2016, 24(16): 1821-1829.

    [24] Zhuang J P, Li X Z, Li S S, et al. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser[J]. Opt. Lett., 2016, 41(24): 5764-5767.

    [25] Zhou P, Zhang F, Guo Q, et al. Reconfigurable radar waveform generation based on an optically injected semiconductor laser[J]. IEEE J. Sel. Topics Quantum Electron., 2017, 23(6): 1801109.

    [26] Zhang B, Zhu D, Zhou P, et al. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser[J]. Appl. Opt., 2019, 58(20): 5479-5485.

    [27] Zhou P, Zhang R, Li K, et al. Generation of NLFM microwave waveforms based on controlled period-one dynamics of semiconductor lasers[J]. Opt. Express, 2020, 28(22): 32647-32656.

    [28] Zhou P, Chen H, Li N, et al. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser[J]. Opt. Lett., 2020, 45(6): 1342-1345.

    [29] Zhou P, Zhang F, Pan S. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator[J]. J. Lightwave Technol., 2018, 36(17): 3726-3732.

    [30] Lin X D, Xia G Q, Shang Z, et al. Frequency-modulated continuous-wave generation based on an optically injected semiconductor laser with optical feedback stabilization[J]. Opt. Express, 2019, 27(2): 1217-1225.

    [31] Huber R, Wojtkowski M, Fujimoto J G. Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography[J]. Opt. Express, 2006, 14(8): 3225-3237.

    [32] Sun G, Zhang F, Pan S. Photonic-assisted high-resolution incoherent back projection synthetic aperture radar imaging[J]. Opt. Commun., 2020, 466: 125633.

    [33] Sun G, Zhang F, Pan S. Millimeter-level resolution through-the-wall radar imaging enabled by an optically injected semiconductor laser[J]. Opt. Lett., 2021, 46(22): 5659-5662.

    [34] Zhou P, Zhang R, Jiang Z, et al. Demonstration of a RF-source-free microwave photonic radar based on an optically injected semiconductor laser[C]// Proc. of 2021 Optical Fiber Communication Conference (OFC 2021). Optical Society of America, 2021: Th1A.11.

    [35] Zhou P, Zhang R, Li N, et al. An RF-source-free reconfigurable microwave photonic radar with high-resolution and fast detection capability[J]. J. Lightwave Technol., 2022, doi: 10.1109/JLT.2022.3142992.

    ZHOU Pei, LI Nianqiang, PAN Shilong. Wideband Radar Signal Generation and Application Based on An Optical Injected Semiconductor Laser[J]. Semiconductor Optoelectronics, 2022, 43(1): 12
    Download Citation