• Photonics Research
  • Vol. 13, Issue 5, 1106 (2025)
Esteban Serrano, Damien Bailleul, Frédéric Désévédavy, Pierre Béjot..., Grégory Gadret, Pierre Mathey, Frédéric Smektala and Bertrand Kibler*|Show fewer author(s)
Author Affiliations
  • Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR6303 CNRS-UBFC, Dijon, France
  • show less
    DOI: 10.1364/PRJ.541738 Cite this Article Set citation alerts
    Esteban Serrano, Damien Bailleul, Frédéric Désévédavy, Pierre Béjot, Grégory Gadret, Pierre Mathey, Frédéric Smektala, Bertrand Kibler, "Towards high-power and ultra-broadband mid-infrared supercontinuum generation using tapered multimode glass rods," Photonics Res. 13, 1106 (2025) Copy Citation Text show less
    References

    [1] I. Zorin, P. Gattinger, A. Ebner. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources. Opt. Express, 30, 5222-5254(2022).

    [2] M. N. Islam, M. J. Freeman, L. M. Peterson. Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared super-continuum laser. Appl. Opt., 55, 1584-1602(2016).

    [3] C. R. Petersen, N. Prtljaga, M. Farries. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett., 43, 999-1002(2018).

    [4] G. P. Agrawal. Nonlinear Fiber Optics(2019).

    [5] T. Sylvestre, E. Genier, A. N. Ghosh. Recent advances in supercontinuum generation in specialty fiber. J. Opt. Soc. Am. B, 38, F90-F103(2021).

    [6] J. M. Dudley, J. R. Taylor. Supercontinuum Generation in Optical Fibers(2010).

    [7] G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov. Infrared fibers. Adv. Opt. Photonics, 7, 379-458(2015).

    [8] F. Smektala, E. Serrano, D. Bailleul. Mid-infrared fibers and their applications to supercontinuum generation. Specialty Optical Fibers, 231-253(2024).

    [9] S. Dai, Y. Wang, X. Peng. A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Appl. Sci., 8, 707(2018).

    [10] A. Lemière, R. Bizot, F. Désévédavy. 1.7–18 μm mid-infrared supercontinuum generation in a dispersion-engineered step-index chalcogenide fiber. Results Phys., 26, 104397(2021).

    [11] C. R. Petersen, U. Møller, I. Kubat. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [12] U. Møller, Y. Yu, I. Kubat. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express, 23, 3282-3291(2015).

    [13] C. R. Petersen, R. D. Engelsholm, C. Markos. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt. Express, 25, 15336-15348(2017).

    [14] D. D. Hudson, S. Antipov, L. Li. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).

    [15] I. Tiliouine, G. Granger, C. E. Jimenez-Durango. Two-octave spanning supercontinuum from a 4.53 μm fiber-based laser. Results Phys., 47, 106326(2023).

    [16] G. Genty, S. Coen, J. M. Dudley. Fiber supercontinuum sources. J. Opt. Soc. Am. B, 24, 1771-1785(2007).

    [17] E. Genier, P. Bowen, T. Sylvestre. Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers. J. Opt. Soc. Am. B, 36, A161-A167(2019).

    [18] T. Cheng, K. Nagasaka, T. H. Tuan. Mid-infrared supercontinuum generation spanning 2 to 15.1 μm in a chalcogenide step-index fiber. Opt. Lett., 41, 2117-2220(2016).

    [19] Z. Zhao, B. Wu, X. Wang. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev., 11, 1700005(2017).

    [20] R. A. Martinez, G. Plant, K. Guo. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Opt. Lett., 43, 296-299(2018).

    [21] G. Woyessa, K. Kwarkye, M. K. Dasa. Power stable 1.5–10.5 μm cascaded mid-infrared supercontinuum laser without thulium amplifier. Opt. Lett., 46, 1129-1132(2021).

    [22] S. Venck, F. St-Hilaire, L. Brilland. 2–10 μm mid-infrared fiber-based supercontinuum laser source: experiment and simulation. Laser Photonics Rev., 14, 2000011(2020).

    [23] A. Lemière, F. Désévédavy, P. Mathey. Mid-infrared supercontinuum generation from 2 to 14 μm in arsenic- and antimony-free chalcogenide glass fibers. J. Opt. Soc. Am. B, 36, A183-A192(2019).

    [24] L. Sun, F. Chen, Y. Xu. Investigation of the third-order nonlinear property of Ge–Se–Te glasses at mid-infrared. Appl. Phys. A, 122, 816(2016).

    [25] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [26] A. Maldonado, M. Evrard, E. Serrano. TeO2-ZnO-La2O3 tellurite glass system investigation for mid-infrared robust optical fibers manufacturing. J. Alloys Compd., 867, 159042(2021).

    [27] M. Evrard, T. Combes, A. Maldonado. TeO2-ZnO-La2O3 tellurite glass purification for mid-infrared optical fibers manufacturing. Opt. Mater. Express, 12, 136-152(2022).

    [28] M. Evrard, E. Serrano, C. Strutynski. Dispersion-shifted tellurite fibers for nonlinear frequency conversion. Opt. Mater. X, 15, 100183(2022).

    [29] M. Deroh, J.-C. Beugnot, K. Hammani. Comparative analysis of stimulated Brillouin scattering at 2 μm in various infrared glass-based optical fibers. J. Opt. Soc. Am. B, 37, 3792-3800(2020).

    [30] H. R. D. Sunak, S. P. Bastien. Refractive index and material dispersion interpolation of doped silica in the 0.6–1.8 μm wavelength region. IEEE Photonics Technol. Lett., 1, 142-145(1989).

    [31] K. Tarnowski, S. Majchrowska, P. Béjot. Numerical modelings of ultrashort pulse propagation and conical emission in multimode optical fibers. J. Opt. Soc. Am. B, 38, 732-742(2021).

    [32] S. Ravets, J. E. Hoffman, P. R. Kordell. Intermodal energy transfer in a tapered optical fiber: optimizing transmission. J. Opt. Soc. Am. A, 30, 2361-2371(2013).

    [33] B. Luo, Y. Wang, Y. Sun. Fabrication and characterization of bare Ge-Sb-Se chalcogenide glass fiber taper. Infrared Phys. Technol., 80, 105-111(2017).

    [34] E. Serrano, D. Bailleul, F. Désévédavy. Multi-octave mid-infrared supercontinuum generation in tapered chalcogenide-glass rods. Opt. Lett., 48, 5479-5482(2023).

    [35] B. Kibler, P. Béjot. Discretized conical waves in multimode optical fibers. Phys. Rev. Lett., 126, 023902(2021).

    [36] K. Stefańska, P. Béjot, K. Tarnowski. Experimental observation of the spontaneous emission of a space–time wavepacket in a multimode optical fiber. ACS Photonics, 10, 727-732(2023).

    [37] A. H. Moharram, M. A. Hefni, A. M. Abdel-Baset. Short and intermediate range order of Ge20Se80−xTex glasses. J. Appl. Phys., 108, 073505(2010).

    [38] D. Hollenbeck, C. D. Cantrell. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B, 19, 2886-2892(2002).

    [39] X. Yan, G. Qin, M. Liao. Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber. J. Appl. Phys., 108, 123110(2010).

    [40] P. Béjot. Multimodal unidirectional pulse propagation equation. Phys. Rev. E, 99, 032217(2019).

    [41] B. Zhang, Y. Yu, C. Zhai. High brightness 2.2–12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. J. Am. Ceram. Soc., 99, 2565-2568(2016).

    [42] D. Jayasuriya, C. R. Petersen, D. Furniss. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Opt. Mater. Express, 9, 2617-2629(2019).

    [43] P. Wang, J. Huang, S. Xie. Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser. Photonics Res., 9, 630-636(2021).

    [44] M. Evrard, T. Mansuryan, V. Couderc. Highly nonlinear multimode tellurite fibers: from glass synthesis to practical applications in multiphoton imaging. Adv. Photonics Res., 4, 2200213(2023).

    [45] K. Krupa, A. Tonello, A. Barthélémy. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics, 4, 110901(2019).

    [46] L. Wright, F. O. Wu, D. Christodoulides. Physics of highly multimode nonlinear optical systems. Nat. Phys., 18, 1018-1030(2022).

    Esteban Serrano, Damien Bailleul, Frédéric Désévédavy, Pierre Béjot, Grégory Gadret, Pierre Mathey, Frédéric Smektala, Bertrand Kibler, "Towards high-power and ultra-broadband mid-infrared supercontinuum generation using tapered multimode glass rods," Photonics Res. 13, 1106 (2025)
    Download Citation