• Advanced Photonics
  • Vol. 5, Issue 5, 054001 (2023)
He-Qi Zheng, Lin Zhang, Yuanjing Cui*, and Guodong Qian*
Author Affiliations
  • Zhejiang University, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials and Advanced Semiconductor Materials, Hangzhou, China
  • show less
    DOI: 10.1117/1.AP.5.5.054001 Cite this Article Set citation alerts
    He-Qi Zheng, Lin Zhang, Yuanjing Cui, Guodong Qian. Dynamically responsive photonic metal–organic frameworks[J]. Advanced Photonics, 2023, 5(5): 054001 Copy Citation Text show less
    References

    [1] J. Zhang et al. Stimuli-responsive AIEgens. Adv. Mater., 33, 2008071(2021).

    [2] Y. Wang et al. Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices. Acc. Chem. Res., 54, 2216-2226(2021).

    [3] M. Grzelczak et al. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev., 48, 1342-1361(2019).

    [4] P. Yang et al. Stimuli-responsive polydopamine-based smart materials. Chem. Soc. Rev., 50, 8319-8343(2021).

    [5] M. Li, W.-H. Zhu. Sterically hindered diarylethenes with a benzobis (thiadiazole) bridge: enantiospecific transformation and reversible photosuperstructures. Acc. Chem. Res., 55, 3136-3149(2022).

    [6] K. Ohara et al. The catalytic Z to E isomerization of stilbenes in a photosensitizing porous coordination network. Angew. Chem. Int. Ed., 49, 5507-5509(2010).

    [7] W. Danowski et al. Photoresponsive porous materials. Nanosc. Adv., 3, 24-40(2021).

    [8] A. Abdollahi et al. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: recent advances and future challenges. ACS Nano, 14, 14417-14492(2020).

    [9] R. Klajn. Spiropyran-based dynamic materials. Chem. Soc. Rev., 43, 148-184(2014).

    [10] M. Irie. Diarylethenes for memories and switches. Chem. Rev., 100, 1685-1716(2000).

    [11] H. B. Cheng et al. Future‐oriented advanced diarylethene photoswitches: from molecular design to spontaneous assembly systems. Adv. Mater., 34, 2108289(2022).

    [12] A. B. Grommet et al. Molecular photoswitching in confined spaces. Acc. Chem. Res., 53, 2600-2610(2020).

    [13] Y. X. Shi et al. Fabrication of photoactuators: macroscopic photomechanical responses of metal–organic frameworks to irradiation by UV light. Angew. Chem. Int. Ed., 58, 9453-9458(2019).

    [14] T.-Y. Xu et al. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J. Am. Chem. Soc., 144, 6278-6290(2022).

    [15] W. Danowski et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol., 14, 488-494(2019).

    [16] W. Danowski et al. Visible-light-driven rotation of molecular motors in a dual-function metal–organic framework enabled by energy transfer. J. Am. Chem. Soc., 142, 9048-9056(2020).

    [17] A. M. Rice et al. Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev., 120, 8790-8813(2020).

    [18] Z. Zhang et al. Stepping out of the blue: from visible to near‐IR triggered photoswitches. Angew. Chem. Int. Ed., 134, e202205758(2022).

    [19] E. A. Dolgopolova et al. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev., 47, 4710-4728(2018).

    [20] Y. Sakata et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science, 339, 193-196(2013).

    [21] Z. Chang et al. Flexible metal–organic frameworks: recent advances and potential applications. Adv. Mater., 27, 5432-5441(2015).

    [22] G. Férey, C. Serre. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev., 38, 1380-1399(2009).

    [23] K. Chen et al. Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chem. Soc. Rev., 51, 1139-1166(2022).

    [24] F. Xu, B. L. Feringa. Photoresponsive supramolecular polymers: from light-controlled small molecules to smart materials. Adv. Mater., 35, 2204413(2023).

    [25] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207-216(2020).

    [26] C. Fenzl et al. Photonic crystals for chemical sensing and biosensing. Angew. Chem. Int. Ed., 53, 3318-3335(2014).

    [27] R. Haldar et al. Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater., 32, 1905227(2020).

    [28] Y. Cui et al. Photonic functional metal-organic frameworks. Chem. Soc. Rev., 47, 5740-5785(2018).

    [29] H.-Q. Zheng et al. Development on fluorescence sensing properties of lanthanide metal–organic frameworks. J. Chin. Ceram. Soc., 50, 3165-3184(2022).

    [30] T. He et al. Chemically stable metal–organic frameworks: rational construction and application expansion. Acc. Chem. Res., 54, 3083-3094(2021).

    [31] H. Wang, J. Li. Microporous metal–organic frameworks for adsorptive separation of C5–C6 alkane isomers. Acc. Chem. Res., 52, 1968-1978(2019).

    [32] J.-D. Xiao, H.-L. Jiang. Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res., 52, 356-366(2019).

    [33] L. Feng et al. Metal–organic frameworks based on group 3 and 4 metals. Adv. Mater., 32, 2004414(2020).

    [34] C. Cong, H. Ma. Photonic metal‐organic frameworks. Adv. Opt. Mater., 9, 2100733(2021).

    [35] W. Cao et al. Energy transfer in metal-organic frameworks and its applications. Small Struct., 5, 2000019(2020).

    [36] H.-Q. Zheng et al. Precise design and deliberate tuning of turn-on fluorescence in tetraphenylpyrazine-based metal−organic frameworks. Research, 2022, 9869510(2022).

    [37] Z. Jiang et al. Enhanced luminescence in multivariate metal–organic frameworks through an isolated-ligand strategy. J. Mater. Chem. C, 10, 10473-10479(2022).

    [38] H.-Q. Zheng et al. Boosting the photoreduction activity of Cr(VI) in metal–organic frameworks by photosensitiser incorporation and framework ionization. J. Mater. Chem. A, 8, 17219-17228(2020).

    [39] D. Zhao et al. Recent progress on porous MOFs for process-efficient hydrocarbon separation, luminescent sensing, and information encryption. Chem. Commun., 58, 747-770(2022).

    [40] Y. Tang et al. Luminescent metal-organic frameworks for white LEDs. Adv. Opt. Mater., 9, 2001817(2020).

    [41] Y. Jiao et al. Photoresponse within dye-incorporated metal-organic architectures. Coord. Chem. Rev., 430, 213648(2021).

    [42] Z. Zhou et al. Stimuli-responsive metal–organic framework nanoparticles for controlled drug delivery and medical applications. Chem. Soc. Rev., 50, 4541-4563(2021).

    [43] R. Medishetty et al. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev., 46, 4976-5004(2017).

    [44] J. Dong et al. Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater., 21, 1334-1340(2022).

    [45] H. He et al. MOF-based organic microlasers. Adv. Opt. Mater., 7, 1900077(2019).

    [46] G. A. Leith et al. Confinement-guided photophysics in MOFs, COFs, and cages. Chem. Soc. Rev., 50, 4382-4410(2021).

    [47] A. J. McConnell et al. Stimuli-responsive metal–ligand assemblies. Chem. Rev., 115, 7729-7793(2015).

    [48] Q. Guan et al. Stimuli responsive metal organic framework materials towards advanced smart application. Mater. Today, 64, 138-164(2023).

    [49] Q. Qi et al. Force-induced near-infrared chromism of mechanophore-linked polymers. J. Am. Chem. Soc., 143, 17337-17343(2021).

    [50] Z. Li et al. Photoresponsive luminescent polymeric hydrogels for reversible information encryption and decryption. Adv. Sci., 6, 1901529(2019).

    [51] Z. Li et al. Photoresponsive supramolecular coordination polyelectrolyte as smart anticounterfeiting inks. Nat. Commun., 12, 1363(2021).

    [52] K. Zheng et al. Rewritable optical memory through high-registry orthogonal upconversion. Adv. Mater., 30, 1801726(2018).

    [53] Z. Chu et al. Supramolecular control of azobenzene switching on nanoparticles. J. Am. Chem. Soc., 141, 1949-1960(2018).

    [54] M. Sawczyk, R. Klajn. Out-of-equilibrium aggregates and coatings during seeded growth of metallic nanoparticles. J. Am. Chem. Soc., 139, 17973-17978(2017).

    [55] J.-C. Boyer et al. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc., 132, 15766-15772(2010).

    [56] L. Zhu et al. Light-controlled molecular switches modulate nanocrystal fluorescence. J. Am. Chem. Soc., 127, 8968-8970(2005).

    [57] J. Lai et al. An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two‐way photoswitching. Angew. Chem. Int. Ed., 53, 14419-14423(2014).

    [58] L. Hou et al. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. J. Am. Chem. Soc., 136, 910-913(2014).

    [59] D. E. Williams et al. Energy transfer on demand: photoswitch-directed behavior of metal–porphyrin frameworks. J. Am. Chem. Soc., 136, 11886-11889(2014).

    [60] L. Heinke, C. Wöll. Surface‐mounted metal–organic frameworks: crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater., 31, 1806324(2019).

    [61] N. Yanai et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J. Am. Chem. Soc., 134, 4501-4504(2012).

    [62] H. Sato et al. Photochemically crushable and regenerative metal–organic framework. J. Am. Chem. Soc., 142, 14069-14073(2020).

    [63] D. E. Williams et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc., 140, 7611-7622(2018).

    [64] X. Meng et al. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci. Adv., 2, e1600480(2016).

    [65] J. Park et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc., 134, 99-102(2012). https://doi.org/10.1021/ja209197f

    [66] Y. Zheng et al. Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nat. Commun., 8, 100(2017).

    [67] F. Bigdeli et al. Switching in metal–organic frameworks. Angew. Chem. Int. Ed., 59, 4652-4669(2020).

    [68] Y. X. Li et al. Reversible light‐controlled CO adsorption via tuning π‐complexation of Cu+ sites in azobenzene‐decorated metal‐organic frameworks. Angew. Chem. Int. Ed., 61, e202212732(2022).

    [69] Z. Wang et al. Tunable molecular separation by nanoporous membranes. Nat. Commun., 7, 13872(2016).

    [70] F. Luo et al. Photoswitching CO2 capture and release in a photochromic diarylethene metal–organic framework. Angew. Chem. Int. Ed., 126, 9452-9455(2014). https://doi.org/10.1002/ange.201311124

    [71] C. B. Fan et al. Significant enhancement of C2H2/C2H4 separation by a photochromic diarylethene unit: a temperature‐and light‐responsive separation switch. Angew. Chem. Int. Ed., 56, 7900-7906(2017). https://doi.org/10.1002/anie.201702484

    [72] Y. Jiang et al. Maximizing photoresponsive efficiency by isolating metal–organic polyhedra into confined nanoscaled spaces. J. Am. Chem. Soc., 141, 8221-8227(2019).

    [73] Y. Jiang et al. Process-oriented smart adsorbents: tailoring the properties dynamically as demanded by adsorption/desorption. Acc. Chem. Res., 55, 75-86(2022).

    [74] Y. Jiang et al. Nanoporous films with oriented arrays of molecular motors for photoswitching the guest adsorption and diffusion. Angew. Chem. Int. Ed., 62, e202214202(2022).

    [75] L. Heinke et al. Photoswitching in two-component surface-mounted metal–organic frameworks: optically triggered release from a molecular container. ACS Nano, 8, 1463-1467(2014).

    [76] B. J. Furlong, M. J. Katz. Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations. J. Am. Chem. Soc., 139, 13280-13283(2017).

    [77] A. B. Kanj et al. Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on–off ratio. Chem. Sci., 11, 1404-1410(2020).

    [78] K. Müller et al. Switching the proton conduction in nanoporous, crystalline materials by light. Adv. Mater., 30, 1706551(2018).

    [79] E. A. Dolgopolova et al. Connecting wires: photoinduced electronic structure modulation in metal-organic frameworks. J. Am. Chem. Soc., 141, 5350-5358(2019).

    [80] C. R. Martin et al. Heterometallic actinide‐containing photoresponsive metal‐organic frameworks: dynamic and static tuning of electronic properties. Angew. Chem. Int. Ed., 133, 8152-8160(2021).

    [81] C. R. Martin et al. Stimuli-modulated metal oxidation states in photochromic MOFs. J. Am. Chem. Soc., 144, 4457-4468(2022).

    [82] J. W. Brown et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci., 4, 2858-2864(2013).

    [83] J. Park et al. Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew. Chem. Int. Ed., 54, 430-435(2015).

    [84] J. Park et al. Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal-organic frameworks. Angew. Chem. Int. Ed., 55, 7188-7193(2016).

    [85] T. Zhao et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: energy transfer, photon upconversion, charge transfer, and organic radical. Acc. Chem. Res., 53, 1279-1292(2020).

    [86] A. B. Kanj et al. Chirality remote control in nanoporous materials by circularly polarized light. J. Am. Chem. Soc., 143, 7059-7068(2021).

    [87] R. Ou et al. Photoresponsive styrylpyrene-modified MOFs for gated loading and release of cargo molecules. Chem. Mater., 32, 10621-10627(2020).

    [88] Q.-H. Guo et al. Single-crystal polycationic polymers obtained by single-crystal-to-single-crystal photopolymerization. J. Am. Chem. Soc., 142, 6180-6187(2020).

    [89] Z.-Y. Yang et al. Photopolymerization-driven macroscopic mechanical motions of a composite film containing a vinyl coordination polymer. Angew. Chem. Int. Ed., 62, e202302429(2023).

    [90] N. Li et al. Erasable photopatterning of stilbene-based metal-organic framework films. Small Methods, 7, e2201231(2023).

    [91] M. Nakagawa et al. Beyond the conventional limitation of photocycloaddition reaction in the roomy nanospace of a metal–organic framework. J. Am. Chem. Soc., 145, 12059-12065(2023).

    [92] H. Zhou et al. Responsive luminescent MOF materials for advanced anticounterfeiting. Chem. Eng. J., 431, 134170(2021).

    [93] J. Liu et al. Achieving multicolor long-lived luminescence in dye-encapsulated metal–organic frameworks and its application to anticounterfeiting stamps. ACS Appl. Mater. Interfaces, 10, 1802-1809(2018).

    [94] J. Yu et al. Two-photon responsive metal organic framework. J. Am. Chem. Soc., 137, 4026-4029(2015).

    [95] N. K. Kulachenkov et al. Photochromic free MOF‐based near‐infrared optical switch. Angew. Chem. Int. Ed., 59, 15522-15526(2020).

    [96] G. C. Thaggard et al. Metal–photoswitch friendship: from photochromic complexes to functional materials. J. Am. Chem. Soc., 144, 23249-23263(2022).

    [97] A. B. Grommet et al. Chemical reactivity under nanoconfinement. Nat. Nanotechnol., 15, 256-271(2020).

    [98] T. Haneda et al. Thermo-to-photo-switching of the chromic behavior of salicylideneanilines by inclusion in a porous coordination network. Angew. Chem. Int. Ed., 46, 6643-6645(2007).

    [99] D. Mutruc et al. Modulating guest uptake in core–shell MOFs with visible light. Angew. Chem. Int. Ed., 58, 12862-12867(2019).

    [100] A. Knebel et al. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater., 29, 3111-3117(2017). https://doi.org/10.1021/acs.chemmater.7b00147

    [101] T. Qian et al. Efficient gating of ion transport in three‐dimensional metal–organic framework sub‐nanochannels with confined light‐responsive azobenzene molecules. Angew. Chem. Int. Ed., 132, 13151-13156(2020).

    [102] R. Ou et al. A sunlight-responsive metal-organic framework system for sustainable water desalination. Nat. Sustain., 3, 1052-1058(2020).

    [103] H.-Q. Liang et al. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem. Int. Ed., 59, 7732-7737(2020).

    [104] K. P. Xie et al. Guest‐driven light‐induced spin change in an azobenzene loaded metal–organic framework. Angew. Chem. Int. Ed., 60, 27144-27150(2021).

    [105] S. Garg et al. Conductance photoswitching of metal–organic frameworks with embedded spiropyran. Angew. Chem. Int. Ed., 58, 1193-1197(2019).

    [106] Y. Yang et al. Electroactive covalent organic framework enabling photostimulus-responsive devices. J. Am. Chem. Soc., 144, 16093-16100(2022).

    [107] G. C. Thaggard et al. Traffic lights for catalysis: stimuli-responsive molecular and extended catalytic systems. Angew. Chem. Int. Ed., 62, e202302859(2023).

    [108] F. Zhang et al. Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism. J. Mater. Chem., 22, 25019-25026(2012).

    [109] I. M. Walton et al. Photo-responsive MOFs: light-induced switching of porous single crystals containing a photochromic diarylethene. Chem. Commun., 49, 8012-8014(2013).

    [110] P. K. Kundu et al. Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nat. Commun., 5, 3588(2014).

    [111] H. A. Schwartz et al. Solution-like behavior of photoswitchable spiropyrans embedded in metal–organic frameworks. Inorg. Chem., 56, 13100-13110(2017).

    [112] M. Tu et al. Reversible optical writing and data storage in an anthracene-loaded metal–organic framework. Angew. Chem. Int. Ed., 58, 2423-2427(2019).

    [113] Y. Wang et al. Application in anticounterfeiting for multistimuli smart luminescent materials based on MOF-on-MOF. Inorg. Chem., 60, 15001-15009(2021).

    [114] Z. Li et al. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem. Int. Ed., 58, 18025-18031(2019).

    [115] T. Zhao et al. Multi-light-responsive upconversion-and-downshifting-based circularly polarized luminescent switches in chiral metal-organic frameworks. Adv. Mater., 33, 2101797(2021).

    [116] H.-Q. Zheng et al. Photo-stimuli-responsive dual-emitting luminescence of spiropyran-encapsulated metal-organic framework for dynamic information encryption. Adv. Mater., 35, 2300177(2023).

    [117] H.-Y. Li et al. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev., 49, 6364-6401(2020).

    [118] N. Yanai et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater., 10, 787-793(2011).

    [119] P. Serra-Crespo et al. NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. J. Am. Chem. Soc., 134, 8314-8317(2012). https://doi.org/10.1021/ja300655f

    [120] P. She et al. Recent progress in external‐stimulus‐responsive 2D covalent organic frameworks. Adv. Mater., 34, 2101175(2022).

    [121] Q. Zhang et al. Piezofluorochromic metal-organic framework: a microscissor lift. J. Am. Chem. Soc., 137, 10064-10067(2015).

    [122] C.-X. Chen et al. Visualization of anisotropic and stepwise piezofluorochromism in an MOF single crystal. Chem, 4, 2658-2669(2018).

    [123] C.-X. Chen et al. Pressure-induced multiphoton excited fluorochromic metal-organic frameworks for improving MPEF properties. Angew. Chem. Int. Ed., 58, 14379-14385(2019).

    [124] C.-X. Chen et al. All roads lead to Rome: tuning the luminescence of a breathing catenated Zr-MOF by programmable multiplexing pathways. Chem. Mater., 31, 5550-5557(2019).

    [125] X. Guo et al. Stimuli-responsive luminescent properties of tetraphenylethene-based strontium and cobalt metal-organic frameworks. Angew. Chem. Int. Ed., 59, 19716-19721(2020).

    [126] Y. Wang et al. Maximized green photoluminescence in Tb‐based metal–organic framework via pressure‐treated engineering. Angew. Chem. Int. Ed., 61, e202210836(2022).

    [127] T. Zhang et al. Brightening blue photoluminescence in non-emission MOF-2 by pressure treatment engineering. Adv. Mater., 35, 2211729(2023).

    [128] Y. Wang et al. Pressure engineering toward harvesting the bright deep-blue-light emission in Y-based metal-organic frameworks. Adv. Funct. Mater., 33, 2300109(2023).

    [129] A. Sussardi et al. Correlating pressure‐induced emission modulation with linker rotation in a photoluminescent MOF. Angew. Chem. Int. Ed., 132, 8195-8199(2020).

    [130] D. M. Jameson, J. A. Ross. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev., 110, 2685-2708(2010).

    [131] G. S. He et al. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev., 108, 1245-1330(2008).

    [132] E. E. Hoover, J. A. Squier. Advances in multiphoton microscopy technology. Nat. Photonics, 7, 93-101(2013).

    [133] L. Guo, M. S. Wong. Multiphoton excited fluorescent materials for frequency upconversion emission and fluorescent probes. Adv. Mater., 26, 5400-5428(2014).

    [134] M. Pawlicki et al. Two‐photon absorption and the design of two‐photon dyes. Angew. Chem. Int. Ed., 48, 3244-3266(2009).

    [135] H. He et al. Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun., 7, 11087(2016).

    [136] H. Li et al. Tunable nonlinear optical responses based on host-guest MOF hybrid materials. Sci. China. Mater., 64, 698-705(2021).

    [137] L. Zhang et al. Aligned chromophores in a host-guest MOF crystal for switchable polarized nonlinear optical response. J. Mater. Chem. C, 10, 14915-14920(2022).

    [138] H. He et al. Controllable broadband multicolour single-mode polarized laser in a dye-assembled homoepitaxial MOF microcrystal. Light-Sci. Appl., 9, 138(2020).

    [139] H. Li et al. Switchable two-photon pumped polarized lasing performance in composition-graded MOFs based heterostructures. Adv. Opt. Mater., 8, 2001089(2020).

    [140] L. Zhang et al. Tunable NIR lasing in MOF for multi-level complex photonic barcodes. Adv. Opt. Mater., 11, 2202714(2023).

    [141] H. Li et al. Polarized laser switching with giant contrast in MOF-based mixed-matrix membrane. Adv. Sci., 9, 2200953(2022).

    [142] Q. Wen et al. Chiral and SHG-active metal–organic frameworks formed in solution and on surfaces: uniformity, morphology control, oriented growth, and postassembly functionalization. J. Am. Chem. Soc., 142, 14210-14221(2020).

    [143] Q. Wen et al. Energy transport in dichroic metallo-organic crystals: selective inclusion of spatially resolved arrays of donor and acceptor dyes in different nanochannels. Angew. Chem. Int. Ed., 62, e202214041(2023).

    [144] H. S. Quah et al. Multiphoton harvesting metal–organic frameworks. Nat. Commun., 6, 7954(2015).

    [145] D. C. Mayer et al. Controlling multiphoton absorption efficiency by chromophore packing in metal–organic frameworks. J. Am. Chem. Soc., 141, 11594-11602(2019).

    [146] L. Zhang et al. Structural variation and switchable nonlinear optical behavior of metal-organic frameworks. Small, 17, 2006649(2021).

    [147] Z. Chen et al. Giant enhancement of second harmonic generation accompanied by the structural transformation of 7-fold to 8-fold interpenetrated metal–organic frameworks (MOFs). Angew. Chem. Int. Ed., 59, 833-838(2020).

    [148] D. Kottilil et al. Multiphoton‐pumped highly polarized polariton microlasers from single crystals of a dye‐coordinated metal–organic framework. Adv. Funct. Mater., 30, 2003294(2020).

    [149] D. Kottilil et al. Triple threshold transitions and strong polariton interaction in 2D layered metal–organic framework microplates. Adv. Mater., 35, 2209094(2023).

    [150] N. Liu et al. Highly efficient multiphoton absorption of zinc-AIEgen metal-organic frameworks. Angew. Chem. Int. Ed., 61, e202115205(2022).

    [151] H. Wang et al. Metal–organic framework with color-switching and strongly polarized emission. Chem. Mater., 31, 5816-5823(2019).

    [152] X. Yang et al. Lanthanide metal–organic framework microrods: colored optical waveguides and chiral polarized emission. Angew. Chem. Int. Ed., 56, 7853-7857(2017).

    [153] K. Pei et al. Polarized emission of lanthanide metal–organic framework (Ln‐MOF) crystals for high‐capacity photonic barcodes. Adv. Opt. Mater., 10, 2102143(2022).

    He-Qi Zheng, Lin Zhang, Yuanjing Cui, Guodong Qian. Dynamically responsive photonic metal–organic frameworks[J]. Advanced Photonics, 2023, 5(5): 054001
    Download Citation