• Frontiers of Optoelectronics
  • Vol. 12, Issue 1, 97 (2019)
Hongbao XIN and Baojun LI*
Author Affiliations
  • Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
  • show less
    DOI: 10.1007/s12200-017-0755-z Cite this Article
    Hongbao XIN, Baojun LI. Fiber-based optical trapping and manipulation[J]. Frontiers of Optoelectronics, 2019, 12(1): 97 Copy Citation Text show less
    References

    [1] Ashkin A. Acceleration and trapping of particles by radiation pressure. Physical Review Letters, 1970, 24(4): 156–159

    [2] Grier D G. A revolution in optical manipulation. Nature, 2003, 424 (6950): 810–816

    [3] Dholakia K, Reece P, Gu M. Optical micromanipulation. Chemical Society Reviews, 2008, 37(1): 42–55

    [4] Dholakia K, Reece P. Optical micromanipulation takes hold. Nano Today, 2006, 1(1): 18–27

    [5] Neuman K C, Block S M. Optical trapping. Review of Scientific Instruments, 2004, 75(9): 2787–2809

    [6] Bustamante C, Bryant Z, Smith S B. Ten years of tension: singlemolecule DNA mechanics. Nature, 2003, 421(6921): 423–427

    [7] Asbury C L, Fehr A N, Block S M. Kinesin moves by an asymmetric hand-over-hand mechanism. Science, 2003, 302(5653): 2130–2134

    [8] Ashkin A. Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4853–4860

    [9] Ashkin A, Dziedzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 330(6150): 769–771

    [10] Ribeiro R S R, Soppera O, Oliva A G, Guerreiro A, Jorge P A. New trends on optical fiber tweezers. Journal of Lightwave Technology, 2015, 33(16): 3394–3405

    [11] Ismaeel R, Lee T, Ding M, Belal M, Brambilla G. Optical microfiber passive components. Laser & Photonics Reviews, 2013, 7(3): 350–384

    [12] Daly M, Sergides M, Nic Chormaic S. Optical trapping and manipulation of micrometer and submicrometer particles. Laser & Photonics Reviews, 2015, 9(3): 309–329

    [13] Lei H, Zhang Y, Li X, Li B. Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber. Lab on a Chip, 2011, 11(13): 2241–2246

    [14] Xin H, Lei H, Zhang Y, Li X, Li B. Photothermal trapping of dielectric particles by optical fiber-ring. Optics Express, 2011, 19(3): 2711–2719

    [15] Liu Z, Guo C, Yang J, Yuan L. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Optics Express, 2006, 14(25): 12510–12516

    [16] Taguchi K, Atsuta K, Nakata T, Ikeda M. Levitation of a microscopic object using plural optical fibers. Optics Communications, 2000, 176(1–3): 43–47

    [17] Mohanty S K, Mohanty K S, Berns M W. Organization of microscale objects using a microfabricated optical fiber. Optics Letters, 2008, 33(18): 2155–2157

    [18] Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I. Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation. Nature Photonics, 2007, 1(12): 723–727

    [19] Xin H, Xu R, Li B. Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Scientific Reports, 2012, 2(1): 818

    [20] Soong C Y, Li W K, Liu C H, Tzeng P Y. Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Optics Express, 2010, 18(3): 2168–2182

    [21] Duhr S, Braun D. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift. Physical Review Letters, 2006, 97(3): 038103

    [22] Xin H, Li X, Li B. Massive photothermal trapping and migration of particles by a tapered optical fiber. Optics Express, 2011, 19(18): 17065–17074

    [23] Xin H, Bao D, Zhong F, Li B. Photophoretic separation of particles using two tapered optical fibers. Laser Physics Letters, 2013, 10(3): 036004

    [24] Lei H, Zhang Y, Li B. Particle separation in fluidic flow by optical fiber. Optics Express, 2012, 20(2): 1292–1300

    [25] Zhang Y, Lei H, Li Y, Li B. Microbe removal using a micrometre-sized optical fiber. Lab on a Chip, 2012, 12(7): 1302–1308

    [26] Liao D, Yu H, Zhang Y, Li B. Photothermal delivery of microscopic objects via convection flows induced by laser beam from fiber tip. Applied Optics, 2011, 50(20): 3711–3716

    [27] Xu R, Xin H, Li B. Photothermal formation of vortex flows by 1.55 mm light. AIP Advances, 2013, 3(5): 052120

    [28] Xu R, Xin H, Li B. Massive assembly and migration of nanoparticles by laser-induced vortex flows. Applied Physics Letters, 2013, 103(1): 014102

    [29] Lu J, Yang H, Zhou L, Yang Y, Luo S, Li Q, Qiu M. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Physical Review Letters, 2017, 118(4): 043601

    [30] Kawata S, Sugiura T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Optics Letters, 1992, 17(11): 772–774

    [31] Wang K, Schonbrun E, Crozier K B. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Letters, 2009, 9(7): 2623–2629

    [32] Wang J, Poon A W. Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices. Lab on a Chip, 2014, 14(8): 1426–1436

    [33] Helleso O G, Lovhaugen P, Subramanian A Z, Wilkinson J S, Ahluwalia B S. Surface transport and stable trapping of particles and cells by an optical waveguide loop. Lab on a Chip, 2012, 12(18): 3436–3440

    [34] Brambilla G, Murugan G S, Wilkinson J S, Richardson D J. Optical manipulation of microspheres along a subwavelength optical wire. Optics Letters, 2007, 32(20): 3041–3043

    [35] Murugan G S, Brambilla G, Wilkinson J S, Richardson D J. Optical propulsion of individual and clustered microspheres along submicron optical wires. Japanese Journal of Applied Physics, 2008, 47(8S1): 6716

    [36] Sheu F W,Wu H Y, Chen S H. Using a slightly tapered optical fiber to attract and transport microparticles. Optics Express, 2010, 18(6): 5574–5579

    [37] Daly M, Truong V G, Chormaic S N. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. Optics Express, 2016, 24(13): 14470–14482

    [38] Sagué G, Vetsch E, Alt W, Meschede D, Rauschenbeutel A. Coldatom physics using ultrathin optical fibers: light-induced dipole forces and surface interactions. Physical Review Letters, 2007, 99(16): 163602

    [39] Daly M, Truong V G, Phelan C, Deasy K, Chormaic S N. Nanostructured optical nanofibres for atom trapping. New Journal of Physics, 2014, 16(5): 053052

    [40] Kumar R, Gokhroo V, Chormaic S N. Multi-level cascaded electromagnetically induced transparency in cold atoms using an optical nanofibre interface. New Journal of Physics, 2015, 17(12): 123012

    [41] Xu L, Li Y, Li B. Size-dependent trapping and delivery of submicrospheres using a submicrofibre. New Journal of Physics, 2012, 14(3): 033020

    [42] Li Y, Xu L, Li B. Optical delivery of nanospheres using arbitrary bending nanofibers. Journal of Nanoparticle Research, 2012, 14(4): 799

    [43] Xin H, Cheng C, Li B. Trapping and delivery of Escherichia coli in a microfluidic channel using an optical nanofiber. Nanoscale, 2013, 5(15): 6720–6724

    [44] Xu C, Lei H, Zhang Y, Li B. Backward transport of nanoparticles in fluidic flow. Optics Express, 2012, 20(3): 1930–1938

    [45] Xin H, Li B. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber. Optics Express, 2011, 19(14): 13285–13290

    [46] Xin H, Li B. Multi-destination release of nanoparticles using an optical nanofiber assisted by a barrier. AIP Advances, 2012, 2(1): 012166

    [47] Li L, Xin H, Lei H, Li B. Optofluidic extraction of particles using a sub-microfiber. Applied Physics Letters, 2012, 101(7): 074103

    [48] Li Y, Xu L, Li B. Gold nanorod-induced localized surface plasmon for microparticle aggregation. Applied Physics Letters, 2012, 101(5): 053118

    [49] Cheng C, Xu X, Lei H, Li B. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Scientific Reports, 2016, 6(1): 20433

    [50] Lei H, Xu C, Zhang Y, Li B. Bidirectional optical transportation and controllable positioning of nanoparticles using an optical nanofiber. Nanoscale, 2012, 4(21): 6707–6709

    [51] Zhang Y, Li B. Particle sorting using a subwavelength optical fiber. Laser & Photonics Reviews, 2013, 7(2): 289–296

    [52] Zhang Y, Lei H, Li B. Refractive-index-based sorting of colloidal particles using a subwavelength optical fiber in a static fluid. Applied Physics Express, 2013, 6(7): 072001

    [53] Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M. Demonstration of a fiber-optical light-force trap. Optics Letters, 1993, 18(21): 1867–1869

    [54] Lyons E, Sonek G. Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Applied Physics Letters, 1995, 66(13): 1584–1586

    [55] Taguchi K, Ueno H, Ikeda M. Rotational manipulation of a yeast cell using optical fibres. Electronics Letters, 1997, 33(14): 1249–1250

    [56] Xu X, Cheng C, Xin H, Lei H, Li B. Controllable orientation of single silver nanowire using two fiber probes. Scientific Reports, 2014, 4(1): 3989

    [57] Xu X, Cheng C, Zhang Y, Lei H, Li B. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures. Scientific Reports, 2016, 6(1): 29449

    [58] Hu Z, Wang J, Liang J. Manipulation and arrangement of biological and dielectric particles by a lensed fiber probe. Optics Express, 2004, 12(17): 4123–4128

    [59] Gong Y, Zhang C, Liu Q F, Wu Y, Wu H, Rao Y, Peng G D. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity. Optics Express, 2015, 23(3): 3762–3769

    [60] Mohanty K S, Liberale C, Mohanty S, Degiorgio V. In depth fiber optic trapping of low-index microscopic objects. Applied Physics Letters, 2008, 92(15): 151113

    [61] Berthelot J, Acimovic S S, Juan M L, Kreuzer M P, Renger J, Quidant R. Three-dimensional manipulation with scanning nearfield optical nanotweezers. Nature Nanotechnology, 2014, 9(4): 295–299

    [62] Deng H, Zhang Y, Yuan T, Zhang X, Zhang Y, Liu Z, Yuan L. Fiber-based optical gun for particle shooting. ACS Photonics, 2017, 4(3): 642–648

    [63] Xin H, Li Y, Li L, Xu R, Li B. Optofluidic manipulation of Escherichia coli in a microfluidic channel using an abruptly tapered optical fiber. Applied Physics Letters, 2013, 103(3): 033703

    [64] Liu Z L, Liu Y X, Tang Y, Zhang N, Wu F P, Zhang B. Fabrication and application of a non-contact double-tapered optical fiber tweezers. Optics Express, 2017, 25(19): 22480–22489

    [65] Xin H, Liu Q, Li B. Non-contact fiber-optical trapping of motile bacteria: dynamics observation and energy estimation. Scientific Reports, 2014, 4(1): 6576

    [66] De Volder M F, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications. Science, 2013, 339(6119): 535–539

    [67] Xin H, Li B. Optical orientation and shifting of a single multiwalled carbon nanotube. Light, Science & Applications, 2014, 3(9): e205

    [68] Li Y C, Xin H B, Lei H X, Liu L L, Li Y Z, Zhang Y, Li B J. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light, Science & Applications, 2016, 5(12): e16176

    [69] Li Y, Xin H, Liu X, Zhang Y, Lei H, Li B. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 2016, 10(6): 5800–5808

    [70] Xin H, Li Y, Xu D, Zhang Y, Chen C H, Li B. Single upconversion nanoparticle-bacterium cotrapping for single-bacterium labeling and analysis. Small, 2017, 13(14): 1603418

    [71] Xin H, Li Y, Liu X, Li B. Escherichia coli-based biophotonic waveguides. Nano Letters, 2013, 13(7): 3408–3413

    [72] Guo F, Li P, French J B, Mao Z, Zhao H, Li S, Nama N, Fick J R, Benkovic S J, Huang T J. Controlling cell-cell interactions using surface acoustic waves. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 43–48

    [73] Tourovskaia A, Figueroa-Masot X, Folch A. Differentiation-on-achip: a microfluidic platform for long-term cell culture studies. Lab on a Chip, 2005, 5(1): 14–19

    [74] Wheeler D B, Carpenter A E, Sabatini D M. Cell microarrays and RNA interference chip away at gene function. Nature Genetics, 2005, 37(6s Suppl): S25–S30

    [75] Ho C T, Lin R Z, Chang W Y, Chang H Y, Liu C H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced fieldinduced dielectrophoresis trap. Lab on a Chip, 2006, 6(6): 724–734

    [76] Xin H, Xu R, Li B. Optical formation and manipulation of particle and cell patterns using a tapered optical fiber. Laser & Photonics Reviews, 2013, 7(5): 801–809

    [77] Li Y, Xin H, Liu X, Li B. Non-contact intracellular binding of chloroplasts in vivo. Scientific Reports, 2015, 5(1): 10925

    [78] Li Y, Xin H, Cheng C, Zhang Y, Li B. Optical separation and controllable delivery of cells from particle and cell mixture. Nanophotonics, 2015, 4(3): 353–360

    [79] Xin H, Zhang Y, Lei H, Li Y, Zhang H, Li B. Optofluidic realization and retaining of cell-cell contact using an abrupt tapered optical fibre. Scientific Reports, 2013, 3(1): 1993

    [80] Huang J, Liu X, Zhang Y, Li B. Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes. Photonics Research, 2015, 3(6): 308–312

    [81] Liu X, Huang J, Zhang Y, Li B. Optical regulation of cell chain. Scientific Reports, 2015, 5(1): 11578

    [82] Choi M, Humar M, Kim S, Yun S H. Step-index optical fiber made of biocompatible hydrogels. Advanced Materials, 2015, 27(27): 4081–4086

    [83] Xin H, Li Y, Li B. Controllable patterning of different cells via optical assembly of 1D periodic cell structures. Advanced Functional Materials, 2015, 25(19): 2816–2823

    [84] Xin H, Li Y, Li B. Bacteria-based branched structures for bionanophotonics. Laser & Photonics Reviews, 2015, 9(5): 554–563