• Optical Instruments
  • Vol. 46, Issue 1, 8 (2024)
Jinbiao ZHANG, Ruijie PENG, and Yan PENG*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202303060041 Cite this Article
    Jinbiao ZHANG, Ruijie PENG, Yan PENG. Regulation of blockade effect in terahertz-dressed Rydberg states[J]. Optical Instruments, 2024, 46(1): 8 Copy Citation Text show less
    References

    [2] ANDERSON D A, MILLER S A, RAITHEL G, et al. Optical measurements of strong microwave fields with rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).

    [3] ZHANG H F, YUAN J P, WANG L R, et al. High-precision three-dimensional Rydberg atom localization in a four-level atomic system[J]. Chinese Physics B, 30, 053202(2021).

    [4] SAFFMAN M. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 49, 202001(2016).

    [5] CONG I, LEVINE H, KEESLING A, et al. Hardware-efficient, fault-tolerant quantum computation with rydberg atoms[J]. Physical Review X, 12, 021049(2022).

    [7] BLUVSTEIN D, OMRAN A, LEVINE H, et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays[J]. Science, 371, 1355-1359(2021).

    [8] JING M Y, HU Y, MA J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [9] SEDLACEK J A, SCHWETTMANN A, KÜBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [10] WADE C G, ŠIBALIĆ N, DE MELO N R, et al. Real-time near-field terahertz imaging with atomic optical fluorescence[J]. Nature Photonics, 11, 40-43(2017).

    [11] CHEN S Y, REED D J, MACKELLAR A R, et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 9, 485-491(2022).

    [12] WU X L, LIANG X H, TIAN Y Q, et al. A concise review of Rydberg atom based quantum computation and quantum simulation[J]. Chinese Physics B, 30, 020305(2021).

    [13] SU S L, LI W B. Dipole-dipole-interaction-driven antiblockade of two Rydberg atoms[J]. Physical Review A, 104, 033716(2021).

    [14] URBAN E, JOHNSON T A, HENAGE T, et al. Observation of Rydberg blockade between two atoms[J]. Nature Physics, 5, 110-114(2009).

    [15] DUMIN Y V. On the effect of interatomic interactions on the efficiency of the rydberg blockade[J]. Moscow University Physics Bulletin, 76, 440-446(2021).

    [16] PAN L, ZHAI H. Composite spin approach to the blockade effect in Rydberg atom arrays[J]. Physical Review Research, 4, L032037(2022).

    [17] BAUR S, TIARKS D, REMPE G, et al. Single-photon switch based on rydberg blockade[J]. Physical Review Letters, 112, 073901(2014).

    [18] DISTANTE E, PADRÓN-BRITO A, CRISTIANI M, et al. Storage enhanced nonlinearities in a cold atomic rydberg ensemble[J]. Physical Review Letters, 117, 113001(2016).

    [19] SHI S, XU B, ZHANG K, et al. High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source[J]. Nature Communications, 13, 4454(2022).

    [20] LI R, LI S R, YU D M, et al. Optimal model for fewer-qubit CNOT gates with rydberg atoms[J]. Physical Review Applied, 17, 024014(2022).

    [21] PENG Y, SHI C J, ZHU Y M, et al. Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement[J]. PhotoniX, 1, 12(2020).

    [22] ZHOU Y C, PENG R J, ZHANG J B, et al. Theoretical investigation on the mechanism and law of broadband terahertz wave detection using rydberg quantum state[J]. IEEE Photonics Journal, 14, 5931808(2022).

    [23] PENG Y, HUANG J L, LUO J, et al. Three-step one-way model in terahertz biomedical detection[J]. PhotoniX, 2, 12(2021).

    [25] DUDIN Y O, KUZMICH A. Strongly interacting Rydberg excitations of a cold atomic gas[J]. Science, 336, 887-889(2012).

    [26] DAS B C, DAS A, BHATTACHARYYA D, et al. Interplay between electromagnetically induced transparency (EIT), absorption (EIA), and Autler-Townes (AT) splitting in an N-type atomic system: experiment and theory[J]. OSA Continuum, 2, 994-1010(2019).

    [27] OYUN Y, ÇAKIR Ö, SEVINÇLI S. Electromagnetically induced transparency and absorption cross-over with a four-level Rydberg system[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 55, 145502(2022).

    [28] TRETYAKOV D B, ENTIN V M, YAKSHINA E A, et al. Controlling the interactions of a few cold Rb Rydberg atoms by radio-frequency-assisted Förster resonances[J]. Physical Review A, 90, 041403(2014).

    [29] CABRAL J S, KONDO J M, GONÇALVES L F, et al. Effects of electric fields on ultracold Rydberg atom interactions[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 44, 184007(2011).

    [30] SINGER K, STANOJEVIC J, WEIDEMÜLLER M, et al. Long-range interactions between alkali Rydberg atom pairs correlated to the ns–ns, np–np and nd–nd asymptotes[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 38, S295-S307(2005).

    [31] JIAO Y C, BAI J X, SONG R, et al. Electric field tuned dipolar interaction between Rydberg atoms[J]. Frontiers in Physics, 10, 892542(2022).

    [32] PETROSYAN D, HÖNING M, FLEISCHHAUER M. Spatial correlations of Rydberg excitations in optically driven atomic ensembles[J]. Physical Review A, 87, 053414(2013).

    [33] VOGT T, VITEAU M, ZHAO J M, et al. Dipole blockade at forster resonances in high resolution laser excitation of Rydberg states of cesium atoms[J]. Physical Review Letters, 97, 083003(2006).

    Jinbiao ZHANG, Ruijie PENG, Yan PENG. Regulation of blockade effect in terahertz-dressed Rydberg states[J]. Optical Instruments, 2024, 46(1): 8
    Download Citation