• Acta Photonica Sinica
  • Vol. 51, Issue 4, 0406005 (2022)
Dongzhou ZHONG*, Zhe XU, Keke ZHAO, Yalan HU, Wanan DENG, Peng HOU, and Jinbo ZHANG
Author Affiliations
  • Intelligent Manufacturing Faculty,Wuyi University,Jiangmen,Guangdong 529020,China
  • show less
    DOI: 10.3788/gzxb20225104.0406005 Cite this Article
    Dongzhou ZHONG, Zhe XU, Keke ZHAO, Yalan HU, Wanan DENG, Peng HOU, Jinbo ZHANG. Exploring of Chaotic Secure Communications with High-speed Using Optical Reservoir Computers[J]. Acta Photonica Sinica, 2022, 51(4): 0406005 Copy Citation Text show less
    References

    [1] N C GERHARDT, M R HOFMANN. Spin-controlled vertical-cavity surface-emitting lasers. Advances in Optical Technologies, 2012, 268949(2012).

    [2] M LINDEMANN, Gaofeng XU, T PUSCH et al. Ultrafast spin-lasers. Nature, 568, 212-215(2019).

    [3] H SUSANTO, K SCHIRES, M J ADAMS et al. Spin-flip model of spin-polarized vertical-cavity surface-emitting lasers: Asymptotic analysis, numerics, and experiments. Physical Review A, 92, 063838(2015).

    [4] Dongzhou ZHONG, Geliang XU, Wei LUO et al. Recongurable dynamic all-optical chaotic logic operations in an optically injected VCSEL. Chinese Physics B, 26, 124204(2017).

    [5] M OESTREICH, J HUEBNER, D HÄGELE et al. Spintronics: spin electronics and optoelectronics in semiconductors. Interacting Electrons in Nanostructures, 59, 181-194(2001).

    [6] Dongzhou ZHONG, Geliang XU, Wei LUO et al. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs. Optics Express, 25, 21684-21704(2017).

    [7] N LI, H SUSANTO, B CEMLYN et al. Secure communication systems based on chaos in optically pumped spin-VCSELs. Optics Letters, 42, 3494-3497(2017).

    [8] R A SEYAB, D ALEXANDROPOULOS, I D H ENNING et al. Instabilities in spin-polarized vertical-cavity surface-emitting lasers. IEEE Photonics Journal, 3, 799-809(2011).

    [9] K IIYAMA, T WASHIZUKA, K YAMAGUCHI. Three-dimensional object profiling by FMCW optical ranging system using a VCSEL. Journal of Lightwave Technology, 37, 3826-3833(2017).

    [10] Dongzhou ZHONG, Zhenzhen XIAO, Guangze YANG et al. Real-time ranging of the six orientational targets by using chaotic polarization radars in the three-node VCSEL network. Optics Express, 27, 9857-9867(2019).

    [11] Ning JIANG, Chenpeng XUE, Ding LIU et al. Secure key distribution based on chaos synchronization of VCSELs subject to symmetric random-polarization optical injection. Optics Letters, 42, 1055-1058(2017).

    [12] M S MIGUEL, Q FENG, J V MOLONEY. Light-polarization dynamics in surface-emitting semiconductor lasers. Physical Review A, 52, 1728(1995).

    [13] Dongzhou ZHONG, Zhengmao WU. Complete chaotic synchronization mechanism of polarization mode of VCSEL with anisotropic optical feedback. Optics Communications, 282, 282-1631(2009).

    [14] Jiao LIU, Zhengmao WU, Guangqiong XIA. Dual-channel chaos synchronization and communication based on unidirectionally coupled VCSELs with polarization-rotated optical feedback and polarization-rotated optical injection. Optics Express, 17, 12619-12626(2009).

    [15] N JIANG, W PAN, B LUO et al. Bidirectional dual-channel communication based on polarization-division-multiplexed chaos synchronization in mutually coupled VCSELs. IEEE Photonics Technology Letters, 24, 1094-1096(2012).

    [16] Hongxiang WANG, Tianfeng LU, Yuefeng JI. Key space enhancement of a chaos secure communication based on VCSELs with a common phase-modulated electro-optic feedback. Optics Express, 28, 23961-23977(2020).

    [17] S KREINBERG, X PORTE, D SCHICKE et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar laser at ultra-low light levels. Nature Communications, 10, 1539(2019).

    [18] C R MIRASSO, R VICENTE, P COLET et al. Synchronization properties of chaotic semiconductor lasers and applications to encryption. Comptes Rendus Physique, 5, 613-622(2004).

    [19] X LI, P WEI, B LUO et al. Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization. IEEE Journal of Quantum Electronics, 42, 953-960(2006).

    [20] Junxiang KE, Lilin YI, Zhao YANG et al. 32 Gb/s chaotic optical communications by deep-learning-based chaos synchronization. Optics Letters, 44, 5776-5779(2019).

    [21] L LARGER, M C SORIANO, D BRUNNER et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Optics Express, 20, 3241-3249(2012).

    [22] L APPELTANT, M C SORIANO, DER SANDE GVAN et al. Information processing using a single dynamical node as complex system. Nature Communications, 2, 1-6(2011).

    [23] N D HAYNES, M C SORIANO, D P ROSIN et al. Reservoir computing with a single time-delay autonomous Boolean node. Physical Review E, 91, 020801(2015).

    [24] K VANDOORNE, W DIERCKX, B SCHRAUWEN et al. Toward optical signal processing using photonic reservoir computing. Optics Express, 16, 11182-11192(2008).

    [25] Y PAQUOT, F DUPORT, A SMERIERI et al. Optoelectronic reservoir computing. Scientific Reports, 2, 287(2012).

    [26] A DEJONCKHEERE, F DUPORT, A SMERIERI et al. All-optical reservoir computer based on saturation of absorption. Optics Express, 22, 10868-10881(2014).

    [27] J VATIN, D RONTANI, M SCIAMANNA. Enhanced performance of a reservoir computer using polarization dynamics in VCSELs. Optics Letters, 43, 4497-4500(2018).

    [28] K TAKANO, C SUGANO. Compact reservoir computing with a photonic integrated circuit. Optics Express, 26, 29424-29439(2018).

    [29] Tongfeng WENG, Huijie YANG, Changgui GU et al. Synchronization of chaotic systems and their machine-learning models. Physical Review E, 99, 042203(2019).

    [30] Y KURIKI, J NAKAYAMA, K TAKANO et al. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Optics Express, 26, 5777-5788(2018).

    [31] J BUENO, S MAKRTOOL, L FROEHLY et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 2334-2536(2018).

    [32] R MARTINENGHI, S RYBALKO, M JACQUOT et al. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Physical Review Letters, 108, 244101(2012).

    [33] L THOMAS, D M WALKER, M SMALL et al. The reservoir’s perspective on generalized synchronization. Chaos, 29, 093133(2019).

    [34] Dongzhou ZHONG, Hua YANG, Jiangtao XI et al. Predictive learning of multi-channel isochronal chaotic synchronization by utilizing parallel optical reservoir computers based on three laterally coupled semiconductor lasers with delay-time feedback. Optics Express, 29, 5279-5294(2021).

    [35] Y HOU, G XIA, W YANG et al. Prediction performance of reservoir computing system based on a semiconductor laser subject to double optical feedback and optical injection. Optics Express, 26, 10211-10219(2018).

    [36] J NAKAYAMA, K KANNO, A UCHIDA. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Optics Express, 24, 8679-8692(2016).

    [37] R LANG, K KOBAYASHI. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 16, 347-355(1980).

    [38] Xiangsheng TAN, Yushuang HOU, Zhengmao WU et al. Parallel information processing by a reservoir computing system based on a VCSEL subject to double optical feedback and optical injection. Optics Express, 27, 26070-26079(2019).

    Dongzhou ZHONG, Zhe XU, Keke ZHAO, Yalan HU, Wanan DENG, Peng HOU, Jinbo ZHANG. Exploring of Chaotic Secure Communications with High-speed Using Optical Reservoir Computers[J]. Acta Photonica Sinica, 2022, 51(4): 0406005
    Download Citation