• Optics and Precision Engineering
  • Vol. 31, Issue 21, 3077 (2023)
Hao ZHOU, Qingzhou MAO*, Xueqing HU, Yike WEI, and Xu ZHANG
Author Affiliations
  • School of Remote Sensing and Information Engineering, Wuhan University, Wuhan430079, China
  • show less
    DOI: 10.37188/OPE.20233121.3077 Cite this Article
    Hao ZHOU, Qingzhou MAO, Xueqing HU, Yike WEI, Xu ZHANG. Application of detector deviation from focal plane in high speed scanning LiDAR[J]. Optics and Precision Engineering, 2023, 31(21): 3077 Copy Citation Text show less
    References

    [1] 李清泉, 毛庆洲. 道路/轨道动态精密测量进展[J]. 测绘学报, 2017, 46(10): 1734-1741. doi: 10.11947/j.AGCS.2017.20170323LIQ Q, MAOQ ZH. Progress on dynamic and precise engineering surveying for pavement and track[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1734-1741.(in Chinese). doi: 10.11947/j.AGCS.2017.20170323

    [2] 毛庆洲, 董翠军, 胡伟. 基于移动激光扫描数据的铁路轨顶高程自动提取方法[J]. 铁道学报, 2021, 43(7):108-113. doi: 10.3969/j.issn.1001-8360.2021.07.014MAOQ ZH, DONGC J, HUW. Method of automatic extraction of rail head elevation based on mobile laser scanning data[J]. Journal of the China Railway Society, 2021, 43(7):108-113. (in Chinese). doi: 10.3969/j.issn.1001-8360.2021.07.014

    [3] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.GUOCH, XUQ, DONGX J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.(in Chinese)

    [4] 伍锡如, 薛其威. 基于激光雷达的无人驾驶系统三维车辆检测[J]. 光学 精密工程, 2022, 30(4):489-497. doi: 10.37188/OPE.20223004.0489WUX R, XUEQ W. 3D vehicle detection for unmanned driving systerm based on lidar[J]. Optics and Precision Engineering, 2022, 30(4):489-497.(in Chinese). doi: 10.37188/OPE.20223004.0489

    [5] J X SHE, A W MABI, Z M LIU et al. Analysis using high-precision airborne LiDAR data to survey potential collapse geological hazards. Advances in Civil Engineering, 2021, 1-10(2021).

    [6] W WAGNER. Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: basic physical concepts. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 505-513(2010).

    [7] 周昊, 毛庆洲, 李清泉. 采样频率和激光脉宽对全波形激光雷达测距精度的影响[J]. 红外与激光工程, 2022, 51(4): 3788/IRLA20210363. doi: 10.3788/IRLA20210363ZHOUH, MAOQ ZH, LIQ Q. Influence of sampling frequency and laser pulse width on ranging accuracy of full waveform lidar[J]. Infrared and Laser Engineering, 2022, 51(4): 3788/IRLA20210363.(in Chinese). doi: 10.3788/IRLA20210363

    [8] K GUO, Q Q LI, CH SH WANG et al. Development of a single-wavelength airborne bathymetric LiDAR: system design and data processing. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 62-84(2022).

    [9] R MA, M L LIU, H ZHENG et al. A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 171-175(2018).

    [10] 史芪纬. 脉冲式激光测距系统的研究[D]. 南京: 南京理工大学, 2013.SHIQ W. Research on Pulsed Laser Ranging System[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)

    [11] B LIENERT, J PORTER, N AHLQUIST et al. A 50 MHz logarithmic amplifier for use in lidar measurements, 2914-2915(2002).

    [12] 张冰娜, 黄庚华, 舒嵘, 等. 用于大动态范围厘米精度激光测距的孔径光阑自动调整技术[J]. 红外与激光工程, 2013, 42(7): 1788-1792. doi: 10.3969/j.issn.1007-2276.2013.07.025ZHANGB N, HUANGG H, SHUR, et al. Automatic adjustment technology of diaphragm used for large dynamic laser ranging with centimetre grade precision[J]. Infrared and Laser Engineering, 2013, 42(7): 1788-1792.(in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.025

    [13] G Y SHI, S LI, K HUANG et al. Numerical ray-tracing approach with laser intensity distribution for LIDAR signal power function computation. Optical Review, 23, 770-775(2016).

    [14] 朱世贤, 赵毅强, 叶茂, 等. 大动态范围激光雷达回波信号饱和处理算法[J]. 光子学报, 2018, 47(12): 1228003. doi: 10.3788/gzxb20184712.1228003ZHUSH X, ZHAOY Q, YEM, et al. Saturated echo signal algorithm for wide dynamic range lidar[J]. Acta Photonica Sinica, 2018, 47(12): 1228003.(in Chinese). doi: 10.3788/gzxb20184712.1228003

    [15] 白杨,唐伟,徐诗月,等.激光成像雷达近程大动态范围实时高精度测距方法[J].红外与激光工程,2020,49(S2):118-123.BAIY, TANGW, XUSH Y, et al. Real-time and high-precision ranging method for large dynamic range of imaging lidar [J]. Infrared and Laser Engineering, 2020, 49(s2): 118-123. (in Chinese)

    [16] 胡以华, 薛永祺, 方抗美, 等. 对地观测激光扫描成像探测效果研究[J]. 红外与毫米波学报, 2001, 20(5):335-339. doi: 10.3321/j.issn:1001-9014.2001.05.004HUY H, XUEY Q, FANGK M, et al. Sounding effect of laser scanning imaging in earth observation[J]. Journal of Infrared and Millimeter Waves, 2001, 20(5):335-339.(in Chinese). doi: 10.3321/j.issn:1001-9014.2001.05.004

    [17] 王春晖,顾宗山,王骐.会聚光束扫描降低相干激光成像雷达滞后角的方法[C].中国光学学会,中国电子学会.第十七届全国激光学术会议论文集.科学出版社,2005:111-115.WANGCH H, GUZ SH, WANGQ. Reducing lag angle of coherent laser imagine radar using converging beam scanning [C]. Optical Society of China, Electronics Society of China. Proceedings of the 17th National Laser Conference. Science Press, 2005: 111-115. (in Chinese)

    [18] F SHAO. Correction of optical lag-angle for monostatic LIDAR sensors, 11455, 751-755(2020).

    [19] Y ITO, M IMAKI, T SAKIMURA et al. Evidence of decreased heterodyne-detection efficiency caused by fast beam scanning in wind sensing coherent Doppler lidar, and demonstration on recovery of the efficiency with lag-angle compensation. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-10(2022).

    [20] H ZHOU, Q Z MAO, Y F SONG et al. Analysis of internal angle error of UAV LiDAR based on rotating mirror scanning. Remote Sensing, 14, 5260(2022).

    [21] 李林. 应用光学: 英文版[M]. 2版. 北京: 北京理工大学出版社, 2012.LIL. Applied Optics[M]. 2nd ed. Beijing: Beijing Insititute of Technology Press, 2012.(in Chinese)

    [22] 金思宇,刘英,党博石,等.异形孔径光阑成像系统像方空间光强分布计算[J/OL].激光与光电子学进展.(2022-07-17) https://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.html. doi: 10.3788/lop221217JINGS Y, LIUY, DANGB SH, et al. Calculation of light intensity distribution in image space of imaging system with arbitrary aperture diaphragm [J/OL]. Laser & Optoelectronics Progress. (2022-07-17). https://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1147.029.html.(in Chinese). doi: 10.3788/lop221217

    [23] 夏珉. 激光原理与技术实验[M]. 北京: 科学出版社, 2017.XIAM. Laser Principle and Technology Experiment[M]. Beijing: Science Press, 2017.(in Chinese)

    Hao ZHOU, Qingzhou MAO, Xueqing HU, Yike WEI, Xu ZHANG. Application of detector deviation from focal plane in high speed scanning LiDAR[J]. Optics and Precision Engineering, 2023, 31(21): 3077
    Download Citation