• High Power Laser and Particle Beams
  • Vol. 33, Issue 9, 093007 (2021)
Qixiang Zhao1, Jinjun Feng2, You Lü1, Shuquan Zheng1, and Tianzhong Zhang3、*
Author Affiliations
  • 1School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
  • 2National Key Laboratory of Science and Technology on Vacuum Electronics, Beijing Vacuum Electronics Research Institute, Beijing 100015, China
  • 3School of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China
  • show less
    DOI: 10.11884/HPLPB202133.210205 Cite this Article
    Qixiang Zhao, Jinjun Feng, You Lü, Shuquan Zheng, Tianzhong Zhang. Study on nonstationary oscillation in continuous frequency tunable terahertz gyrotron[J]. High Power Laser and Particle Beams, 2021, 33(9): 093007 Copy Citation Text show less
    References

    [1] Nanni E A, Barnes A B, Griffin R G, et al. THz dynamic nuclear polarization NMR[J]. IEEE Transactions onTerahertz Science and Technology, 1, 145-163(2011).

    [2] Griffin R G, Prisner T F. High field dynamic nuclear polarization—the renaissance[J]. Physical Chemistry Chemical Physics, 12, 5737-5740(2010).

    [3] Masion A, Alexandre A, Ziarelli F, et al. Dynamic Nuclear Polarization NMR as a new tool to investigate the nature of organic compounds occluded in plant silica particles[J]. Scientific Reports, 7, 3430(2017).

    [4] Liao S Y, Lee M, Wang T, et al. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location[J]. Journal of Biomolecular NMR, 64, 223-237(2016).

    [5] Leggett J, Hunter R, Granwehr J, et al. A dedicated spectrometer for dissolution DNPNMR spectroscopy[J]. Physical Chemistry Chemical Physics, 12, 5883-5892(2010).

    [6] Plainchont B, Berruyer P, Dumez J N, et al. Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry[J]. Analytical Chemistry, 90, 3639-3650(2018).

    [7] Mompeán M, Sánchez-Donoso R M, De LaHoz A, et al. Pushing nuclear magnetic resonance sensitivity limits with microfluidics and photo-chemically induced dynamic nuclear polarization[J]. Nature Communications, 9, 108(2018).

    [13] Temkin R J. Development of terahertz gyrotrons for spectroscopy at MIT[J]. Terahertz Science and Technology, 7, 1-9(2014).

    [14] Hnstein M K, Bajaj V S, Griffin R G, et al. Design of a 460 GHz second harmonic gyrotron oscillat f use in dynamic nuclear polarization[C]Proceedings of the Twenty Seventh International Conference on Infrared Millimeter Waves. San Diego: IEEE, 2002: 193194.

    [15] Idehara T, Kosuga K, Agusu L, et al. Continuously frequency tunable high power sub-THz radiation source—gyrotron FU CW VI for 600 MHz DNP-NMR spectroscopy[J]. Journal ofInfrared, Millimeter, and Terahertz Waves, 31, 775-790(2010).

    [16] Glyavin M Y, Chirkov A V, Denisov G G, et al. Experimental tests of a 263 GHz gyrotron for spectroscopic applications and diagnostics of various media[J]. Review ofScientific Instruments, 86, 054705(2015).

    [17] Yoon D, Soundararajan M, Cuanillon P, et al. Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260 GHz[J]. Journal of Magnetic Resonance, 262, 62-67(2016).

    [18] Braunmüller F. Gyrotron physics from linear to chaotic regimes: experiment numerical modeling[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2016: 5076.

    [19] Airila M I, Dumbrajs O, Reinfelds A, et al. Nonstationary oscillations in gyrotrons[J]. Physicsof Plasmas, 8, 4608-4612(2001).

    [20] Kern S. Numerische simulation der gyrotronwechselwirkung in koaxialen resonaten[D]. Karlsruhe: Universität Karlsruhe, 1996.

    [21] Kartikeyan M V, Bie E, Thumm M K A. Gyrotrons— high power microwave millimeter wave technology[M]. Berlin: Springer Press, 2003.

    [22] Dumbrajs O, Nusinovich G S. Self-consistent non-stationary theory of the gyrotron[J]. Physics of Plasmas, 23, 083125(2016).

    [23] Li Zhengdi, Du Chaohai, Qi Xiangbo, et al. A 0.33-THz second-harmonic frequency-tunable gyrotron[J]. Chinese Physics B, 25, 029401(2016).

    [24] Zhao Qixiang, Yu Sheng, Zhang Yanyan, et al. Investigation of the influence of electron beam quality on the operation in 0.42-THz second harmonic gyrotron[J]. IEEE Transactions on Plasma Science, 44, 749-754(2016).

    [25] Zhang Yanqing. Research on magron injected gun of a ultrawideb continuously adjustable terahertz gyrotron[D]. Chengdu: University of Electronic Science Technology of China, 2020

    Qixiang Zhao, Jinjun Feng, You Lü, Shuquan Zheng, Tianzhong Zhang. Study on nonstationary oscillation in continuous frequency tunable terahertz gyrotron[J]. High Power Laser and Particle Beams, 2021, 33(9): 093007
    Download Citation