• Photonics Research
  • Vol. 12, Issue 2, 356 (2024)
Huan Yuan1, Zheqiang Zhong1、2, and Bin Zhang1、2、*
Author Affiliations
  • 1College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
  • 2Big Data Analysis and Fusion Application Technology Engineering Laboratory of Sichuan Province, Chengdu 610065, China
  • show less
    DOI: 10.1364/PRJ.509544 Cite this Article Set citation alerts
    Huan Yuan, Zheqiang Zhong, Bin Zhang. Visible-frequency nonvolatile reconfigurable Janus metasurfaces for dual-wavelength-switched and spin-asymmetric holograms[J]. Photonics Research, 2024, 12(2): 356 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] X. Chen, L. Huang, H. Mühlenbernd. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [3] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [4] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [5] M. Khorasaninejad, W. T. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [6] L. Huang, X. Chen, H. Mühlenbernd. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [7] D. Wen, F. Yue, G. Li. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [8] H. Ren, G. Briere, X. Fang. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [9] R. Zheng, R. Pan, G. Geng. Active multiband varifocal metalenses based on orbital angular momentum division multiplexing. Nat. Commun., 13, 4292(2022).

    [10] P. Georgil, Q. Wei, B. Sain. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [11] G. Qu, W. Yang, Q. Song. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [12] I. Kim, J. Jang, G. Kim. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [13] X. Guo, P. Li, J. Zhong. Stokes meta-hologram toward optical cryptography. Nat. Commun., 13, 6687(2022).

    [14] H. Yang, P. He, K. Ou. Angular momentum holography via a minimalist metasurface for optical nested encryption. Light Sci. Appl., 12, 79(2023).

    [15] F. Zhang, Y. Guo, M. Pu. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun., 14, 1946(2023).

    [16] X. M. Goh, Y. Zheng, S. J. Tan. Three-dimensional plasmonic stereoscopic prints in full colour. Nat. Commun., 5, 5361(2014).

    [17] S. J. Tan, L. Zhang, D. Zhu. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett., 14, 4023-4029(2014).

    [18] J. Deng, L. Deng, Z. Guan. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett., 20, 1830-1838(2020).

    [19] Y. Cao, L. Tang, J. Li. Four-channel display and encryption by near-field reflection on nanoprinting metasurface. Nanophotonics, 11, 3365-3374(2022).

    [20] J. Deng, Z. Li, J. Li. Metasurface-assisted optical encryption carrying camouflaged information. Adv. Opt. Mater., 10, 2200949(2022).

    [21] Y. Zhang, P. Lin, P. Huo. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging. Nano Lett., 23, 2991-2997(2023).

    [22] B. Song, S. Wen, W. Shu. Topological differential microscopy based on the spin−orbit interaction of light in a natural crystal. ACS Photonics, 9, 3987-3994(2022).

    [23] G. Ma, J. Yu, R. Zhu. Optical multi-imaging-casting accelerator for fully parallel universal convolution computing. Photonics Res., 11, 299-312(2023).

    [24] H. Zhou, J. Dong, J. Cheng. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).

    [25] C. Qian, B. Zheng, Y. Shen. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics, 14, 383-390(2020).

    [26] Z. L. Deng, M. Jin, X. Ye. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [27] Y. Ni, C. Chen, S. Wen. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [28] K. Chen, G. Ding, G. Hu. Directional Janus metasurface. Adv. Mater., 32, 1906352(2019).

    [29] K. Chen, Y. Feng. A review of recent progress on directional metasurfaces: concept, design, and application. J. Phys. D, 55, 383001(2022).

    [30] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett., 97, 167401(2006).

    [31] C. Menzel, C. Helgert, C. Rockstuhl. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett., 104, 253902(2010).

    [32] M. A. Naveed, M. A. Ansari, I. Kim. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst. Nanoeng., 7, 5(2021).

    [33] C. Wan, C. Dai, S. Wan. Dual-encryption freedom via a monolayer-nanotextured Janus metasurface in the broadband visible. Opt. Express, 29, 33954-33961(2021).

    [34] X. Liang, L. Deng, X. Shan. Asymmetric hologram with a single-size nanostructured metasurface. Opt. Express, 29, 19964-19974(2021).

    [35] M. A. Ansari, I. Kim, I. D. Rukhlenko. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horiz., 5, 57-64(2020).

    [36] Y. Zhang, J. B. Chou, J. Li. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun., 10, 4279(2019).

    [37] Q. Zhang, Y. Zhang, J. Li. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett., 43, 94-97(2018).

    [38] M. Delaney, I. Zeimpekis, D. Lawson. A new family of ultralow loss reversible phase-change materials for photonic integrated circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater., 30, 2002447(2020).

    [39] M. Wang, J. S. Lee, S. Aggarwal. Varifocal metalens using tunable and ultralow-loss dielectrics. Adv. Sci., 10, 2204899(2023).

    [40] C. Choi, S. Mun, J. Sung. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv. Funct. Mater., 31, 2007210(2021).

    [41] F. Zhang, X. Xie, M. Pu. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv. Mater., 32, 1908194(2020).

    [42] G. Chen, J. Zhou, S. E. Bopp. Visible and near-infrared dual band switchable metasurface edge imaging. Opt. Lett., 47, 4040-4043(2022).

    [43] M. Delaney, I. Zeimpekis, H. Du. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv., 7, eabg3500(2021).

    [44] J. Zheng, Z. Fang, C. Wu. Nonvolatile electrically reconfigurable integrated photonic switch enabled by a silicon PIN diode heater. Adv. Mater., 32, 2001218(2020).

    [45] S. Raoux, F. Xiong, M. Wuttig. Phase change materials and phase change memory. MRS Bull., 39, 703-710(2014).

    [46] O. Hemmatyar, S. Abdollahramezani, I. Zeimpekis. Advanced phase-change materials for enhanced meta-displays. arXiv(2021).

    [47] B. Chen, S. Yang, J. Chen. Directional terahertz holography with thermally active Janus metasurface. Light Sci. Appl., 12, 136(2023).

    [48] D. Zhang, G. Pan, Z. Jin. Tunable dielectric metasurfaces by structuring the phase-change material. Opt. Express, 30, 4312-4326(2022).

    Huan Yuan, Zheqiang Zhong, Bin Zhang. Visible-frequency nonvolatile reconfigurable Janus metasurfaces for dual-wavelength-switched and spin-asymmetric holograms[J]. Photonics Research, 2024, 12(2): 356
    Download Citation