• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 4075 (2022)
FANG Guang1, XU Dongqing1, TAN Shengheng2, ZHANG Hua2, JIA Ruidong1, and XU Kai1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    FANG Guang, XU Dongqing, TAN Shengheng, ZHANG Hua, JIA Ruidong, XU Kai. Phase and Structure Transitions of HighLevel Liquid Waste Calcine and Glass at Elevated Temperature[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4075 Copy Citation Text show less
    References

    [1] OJOVAN M I, LEE W E. An introduction to nuclear waste immobilisation[M]. 2nd ed. Amsterdam: Elsevier, 2005.

    [2] GIN S, ABDELOUAS A, CRISCENTI L J, et al. An international initiative on longterm behavior of highlevel nuclear waste glass[J]. Materials Today, 2013, 16(6): 243248.

    [4] GOEL A, MCCLOY J S, POKORNY R, et al. Challenges with vitrification of Hanford highlevel waste (HLW) to borosilicate glassan overview[J]. Journal of NonCrystalline Solids: X, 2019, 4: 100033.

    [5] VERNAZ , BRUEZIRE J. History of nuclear waste glass in France[J]. Procedia Materials Science, 2014, 7: 39.

    [6] MARCIAL J, CHUN J, HRMA P, et al. Effect of bubbles and silica dissolution on melter feed rheology during conversion to glass[J]. Environmental Science & Technology, 2014, 48(20): 1217312180.

    [7] GUILLEN D P, LEE S, HRMA P, et al. Evolution of chromium, manganese and iron oxidation state during conversion of nuclear waste melter feed to molten glass[J]. Journal of NonCrystalline Solids, 2020, 531: 119860.

    [8] MARCIAL J, KLOUEK J, VERNEROV M, et al. Effect of Al and Fe sources on conversion of highlevel nuclear waste feed to glass[J]. Journal of Nuclear Materials, 2022, 559: 153423.

    [9] MONTEIRO A, SCHULLER S, TOPLIS M J, et al. Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment[J]. Journal of Nuclear Materials, 2014, 448(1/2/3): 819.

    [10] XU K, HRMA P, RICE J, et al. Melter feed reactions at T≤700 ℃ for nuclear waste vitrification[J]. Journal of the American Ceramic Society, 2015, 98(10): 31053111.

    [11] XU K, HRMA P, RICE J A, et al. Conversion of nuclear waste to molten glass: coldcap reactions in crucible tests[J]. Journal of the American Ceramic Society, 2016, 99(9): 29642970.

    [12] WORRALL A. Core and fuel technologies in integral pressurized water reactors (iPWRs)[M]//CARELLI M D, INGERSOLL D T. Handbook of small modular nuclear reactors (second edition). Cambridge: Woodhead Publishing, 2021: 6993.

    [14] LI H, CHARPENTIER T, DU J C, et al. Composite reinforcement: recent development of continuous glass fibers[J]. International Journal of Applied Glass Science, 2017, 8(1): 2336.

    [15] ZHU H Z, WANG F, LIAO Q L, et al. Structure features, crystallization kinetics and water resistance of borosilicate glasses doped with CeO2[J]. Journal of NonCrystalline Solids, 2019, 518: 5765.

    [16] KIM M, HA M G, UM W, et al. Relationship between leaching behavior and glass structure of calciumaluminoborate waste glasses with various La2O3 contents[J]. Journal of Nuclear Materials, 2020, 539: 152331.

    [17] BAEK J Y, SHIN S H, KIM S H, et al. Thermal history driven molecular structure transitions in aluminoborosilicate glass[J]. Journal of the American Ceramic Society, 2018, 101(8): 32713275.

    [18] ELDAMRAWI G, ELEGILI K. Characterization of novel CeO2B2O3 glasses, structure and properties[J]. Physica B: Condensed Matter, 2001, 299(1/2): 180186.

    [20] BREHAULT A, PATIL D, KAMAT H, et al. Compositional dependence of solubility/retention of molybdenum oxides in aluminoborosilicatebased model nuclear waste glasses[J]. The Journal of Physical Chemistry B, 2018, 122(5): 17141729.

    FANG Guang, XU Dongqing, TAN Shengheng, ZHANG Hua, JIA Ruidong, XU Kai. Phase and Structure Transitions of HighLevel Liquid Waste Calcine and Glass at Elevated Temperature[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4075
    Download Citation