• Chinese Journal of Lasers
  • Vol. 48, Issue 11, 1111002 (2021)
Sen Guo1, Xin Zhao1, Zhaogang Nie1、*, Lin Ma1, Fangteng Zhang1, Weiren Zhao1, Xinzhong Li2, Jiahua Zhang3, and Wenchun Zhang4
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • 2School of Physics and Engineering, Henan University of Science & Technology, Luoyang, Henan 471023, China;
  • 3State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
  • 4College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
  • show less
    DOI: 10.3788/CJL202148.1111002 Cite this Article Set citation alerts
    Sen Guo, Xin Zhao, Zhaogang Nie, Lin Ma, Fangteng Zhang, Weiren Zhao, Xinzhong Li, Jiahua Zhang, Wenchun Zhang. Ultrafast Spectral Response of Many-Body Effects During Exciton Formation in Multilayer MoS2[J]. Chinese Journal of Lasers, 2021, 48(11): 1111002 Copy Citation Text show less
    References

    [1] Novoselov K S, Mishchenko A, Carvalho A et al. 2D materials and van der Waals heterostructures[J]. Science, 353, 9439-9450(2016).

    [2] Duan X, Wang C, Pan A et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors:opportunities and challenges[J]. Chemical Society Reviews, 44, 8859-8876(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=bdef1f11f1b0de2156fe730f1d4afe54

    [3] Ajayan P, Kim P, Banerjee K et al. Two-dimensional van der Waals materials[J]. Physics Today, 69, 39-44(2016).

    [4] Radisavljevic B, Radenovic A, Brivio J et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).

    [5] Mak K F, Heinz T F, Shan J et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010). http://www.ncbi.nlm.nih.gov/pubmed/21230799

    [6] Britnell L, Ribeiro R M, Eckmann A et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 340, 1311-1314(2013).

    [7] Li H F, Liang T, Xie S et al. Fluorescence property of two-dimensional materials/PTCDA heterojunctions[J]. Chinese Journal of Lasers, 44, 0703011(2017).

    [8] Roy K, Padmanabhan M, Goswami S et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 8, 826-830(2013). http://europepmc.org/abstract/med/24141541

    [9] Zhou X, Zhai T Y. Fresh blood of two-dimensional materials: group Ⅳ-Ⅵ semiconductors[J]. Chinese Journal of Lasers, 44, 0703006(2017).

    [10] Yu W J, Li Z, Zhou H et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters[J]. Nature Materials, 12, 246-252(2013). http://europepmc.org/articles/PMC4249642/

    [11] Ruppert C, Chernikov A, Hill H M et al. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation[J]. Nano Letters, 17, 644-651(2017). http://www.ncbi.nlm.nih.gov/pubmed/?term=28059520[uid]

    [12] Bellus M Z, Ceballos F, Chiu H Y et al. Tightly bound trions in transition metal dichalcogenide heterostructures[J]. ACS Nano, 9, 6459-6464(2015).

    [13] Ceballos F, Cui Q N, Bellus M Z et al. Exciton formation in monolayer transition metal dichalcogenides[J]. Nanoscale, 8, 11681-11688(2016).

    [14] Steinleitner P, Merkl P, Nagler P et al. Direct observation of ultrafast exciton formation in a monolayer of WSe2[J]. Nano Letters, 17, 1455-1460(2017). http://pubs.acs.org/doi/10.1021/acs.nanolett.6b04422

    [15] Eroglu Z E, Comegys O, Quintanar L S et al. Ultrafast dynamics of exciton formation and decay in two-dimensional tungsten disulfide (2D-WS2) monolayers[J]. Physical Chemistry Chemical Physics, 22, 17385-17393(2020).

    [16] Steinhoff A, Florian M, Rösner M et al. Nonequilibrium carrier dynamics in transition metal dichalcogenide semiconductors[J]. 2D Materials, 3, 031006(2016). http://arxiv.org/abs/1603.03633v1

    [17] Chernikov A, Ruppert C, Hill H M et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers[J]. Nature Photonics, 9, 466-470(2015).

    [18] Sie E J, Steinhoff A, Gies C et al. Observation of exciton redshift-blueshift crossover in monolayer WS2[J]. Nano Letters, 17, 4210-4216(2017).

    [19] Lin T N, Santiago S R M, Caigas S P et al. Many-body effects in doped WS2 monolayer quantum disks at room temperature[J]. Npj 2D Materials and Applications, 3, 46-51(2019).

    [20] Cunningham P D, Hanbicki A T, McCreary K M et al. Photoinduced bandgap renormalization and exciton binding energy reduction in WS2[J]. ACS Nano, 11, 12601-12608(2017).

    [21] Wang G Z, Wang K P, McEvoy N et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2[J]. Small, 15, 1902728(2019). http://onlinelibrary.wiley.com/doi/10.1002/smll.201902728

    [22] Guo M C, Wang M D, Zhang S J et al. Techniques for femtosecond laser processing of micro-holes in FR-4 copper clad laminate[J]. Chinese Journal of Lasers, 47, 1202008(2020).

    [23] Liu Z Y, Liu S L, Huang A W et al. Generation of broadband supercontinuum source with pulse width of one hundred femtosecond[J]. Acta Photonica Sinica, 49, 0914002(2020).

    [24] Song C, Yang X J, Zhao W et al. Depth-micro laser drilling methods based on spatial light modulator[J]. Acta Photonica Sinica, 49, 0814001(2020).

    [25] Nie Z G, Long R, Teguh J S et al. Ultrafast electron and hole relaxation pathways in few-layer MoS2[J]. The Journal of Physical Chemistry C, 119, 20698-20708(2015). http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b05048

    [26] Nie Z G, Long R, Sun L F et al. Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2[J]. ACS Nano, 8, 10931-10940(2014).

    [27] Zhao X, Nie Z G, Zhang F T et al. Spectroscopic modulation of coherent lattice vibrations in one-dimensional single-walled carbon nanotubes[J]. Laser & Optoelectronics Progress, 56, 033003(2019).

    [28] Xu H, Zhang H, Guo Z et al. High-performance wafer-scale MoS2 transistors toward practical application[J]. Small, 14, e1803465(2018).

    [29] Lee C, Yan H G, Brus L E et al. Anomalous lattice vibrations of single- and few-layer MoS2[J]. ACS Nano, 4, 2695-2700(2010). http://www.ncbi.nlm.nih.gov/pubmed/20392077?systemmessage=wiley+online+library+will+be+disrupted+4+feb+from+10-12+gmt+for+monthly+maintenance

    [30] Yu Y L, Yu Y F, Xu C et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers[J]. Physical Review B, 93, 201111(2016). http://www.oalib.com/paper/3562876

    [31] Sim S, Park J, Song J G et al. Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics[J]. Physical Review B, 88, 075434(2013).

    [32] Cunningham P D, McCreary K M, Jonker B T et al. Auger recombination in chemical vapor deposition-grown monolayer WS2[J]. The Journal of Physical Chemistry Letters, 7, 5242-5246(2016).

    [33] Sun D Z, Rao Y, Reider G A et al. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide[J]. Nano Letters, 14, 5625-5629(2014). http://www.ncbi.nlm.nih.gov/pubmed/25171389

    [34] van Tuan D, Scharf B, Wang Z F et al. Probing many-body interactions in monolayer transition-metal dichalcogenides[J]. Physical Review B, 99, 085301(2019). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.085301

    [35] Dery H. Theory of intervalley Coulomb interactions in monolayer transition-metal dichalcogenides[J]. Physical Review B, 94, 075421(2016). http://arxiv.org/abs/1604.00068

    [36] Gispert J R. Coordination chemistry[M], 483-485(2008).

    Sen Guo, Xin Zhao, Zhaogang Nie, Lin Ma, Fangteng Zhang, Weiren Zhao, Xinzhong Li, Jiahua Zhang, Wenchun Zhang. Ultrafast Spectral Response of Many-Body Effects During Exciton Formation in Multilayer MoS2[J]. Chinese Journal of Lasers, 2021, 48(11): 1111002
    Download Citation