• Acta Physica Sinica
  • Vol. 69, Issue 18, 184210-1 (2020)
Zhou-Xiao-Song Zeng1, Xiao Wang1、*, and An-Lian Pan2、*
Author Affiliations
  • 1Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, Hunan University, Changsha 410082, China
  • 2Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
  • show less
    DOI: 10.7498/aps.69.20200452 Cite this Article
    Zhou-Xiao-Song Zeng, Xiao Wang, An-Lian Pan. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement[J]. Acta Physica Sinica, 2020, 69(18): 184210-1 Copy Citation Text show less
    (a) Side view (left) and top view (right) of MoS2 atomic structure. The highlighted armchair direction and zigzag direction correspond to the top view. (b) Mechanical exfoliated MoS2 with different layers[16]. (c) 2H phase MoS2 layers show diminishing the oscillation in SHG signal[16]. (d) Optical image of artificial folded MoS2(left) and its corresponding SHG image(right)[31]. (e) Crystal structure of 3R phase MoS2 and corresponding SH dipole[32]. (f) 3R phase MoS2 layers show quadratic enhanced SHG with the increase of layers[32].
    Fig. 1. (a) Side view (left) and top view (right) of MoS2 atomic structure. The highlighted armchair direction and zigzag direction correspond to the top view. (b) Mechanical exfoliated MoS2 with different layers[16]. (c) 2H phase MoS2 layers show diminishing the oscillation in SHG signal[16]. (d) Optical image of artificial folded MoS2(left) and its corresponding SHG image(right)[31]. (e) Crystal structure of 3R phase MoS2 and corresponding SH dipole[32]. (f) 3R phase MoS2 layers show quadratic enhanced SHG with the increase of layers[32].
    CVD grown TMDCs with highly efficient SHG: (a) Optical image (left) and zoom in AFM image (right) of spiral WS2 flake[39]; (b) layer dependent SHG of spiral WS2 flake[39]; (c) schematic illustration of pyramid-like WS2 structure[41]; (d) pyramid-like WS2 displays high intensity of residual edge SHG signal[41].
    Fig. 2. CVD grown TMDCs with highly efficient SHG: (a) Optical image (left) and zoom in AFM image (right) of spiral WS2 flake[39]; (b) layer dependent SHG of spiral WS2 flake[39]; (c) schematic illustration of pyramid-like WS2 structure[41]; (d) pyramid-like WS2 displays high intensity of residual edge SHG signal[41].
    Polarization properties of SHG in TMDCs: (a) SHG polarization in monolayer MoS2 shows six fold rotation symmetry[16]; (b) top view of MoS2 crystallographic orientation, where x represents armchair direction, y represents zigzag direction and θ is the angle between input laser and armchair direction [16]; SHG polarization in (c) WS2/MoS2 laterally epitaxial heterostructure[44] and (d) WSe2/WS2 AA, AB vertical heterostructure[45], where the insets shows correspongding SHG mapping; (e) superposition of SHG polarization by artificial stacks of two different 2D materials[46]; (f)−(h) demonstration of distinguishing of different grain boundary in monolayer MoS2 thin film be SHG polarization[47].
    Fig. 3. Polarization properties of SHG in TMDCs: (a) SHG polarization in monolayer MoS2 shows six fold rotation symmetry[16]; (b) top view of MoS2 crystallographic orientation, where x represents armchair direction, y represents zigzag direction and θ is the angle between input laser and armchair direction [16]; SHG polarization in (c) WS2/MoS2 laterally epitaxial heterostructure[44] and (d) WSe2/WS2 AA, AB vertical heterostructure[45], where the insets shows correspongding SHG mapping; (e) superposition of SHG polarization by artificial stacks of two different 2D materials[46]; (f)−(h) demonstration of distinguishing of different grain boundary in monolayer MoS2 thin film be SHG polarization[47].
    Exciton resonance properties of SHG in TMDCs: (a) Schematic illustration of SHG when two incident photons are resonant with 2p state of A exciton[50]; (b) excitation wavelength dependent SHG of monolayer WSe2 at T = 4 K[50]; (c) second order nonlinear susceptibility and absorption served as the function of pump laser energy in monolayer (blue) and trilayer (green) MoS2[16]; (d), (e) illustration of SHG enhancement in spiral WS2 flake when the excitation energy slightly above bandgap by comparison of reflective spectrum with SHG spectrum[51]; (f) SHG spectra (dotted traces) of monolayer alloys and corresponding room-temperature PL spectra (solid traces)[52]; (g), (h) CVD grown monolayer MoS2 flakes show edge enhanced SHG[47].
    Fig. 4. Exciton resonance properties of SHG in TMDCs: (a) Schematic illustration of SHG when two incident photons are resonant with 2p state of A exciton[50]; (b) excitation wavelength dependent SHG of monolayer WSe2 at T = 4 K[50]; (c) second order nonlinear susceptibility and absorption served as the function of pump laser energy in monolayer (blue) and trilayer (green) MoS2[16]; (d), (e) illustration of SHG enhancement in spiral WS2 flake when the excitation energy slightly above bandgap by comparison of reflective spectrum with SHG spectrum[51]; (f) SHG spectra (dotted traces) of monolayer alloys and corresponding room-temperature PL spectra (solid traces)[52]; (g), (h) CVD grown monolayer MoS2 flakes show edge enhanced SHG[47].
    SHG valley selection rules: (a) Circular polarization-resolved SHG spectra showing the generation of counter-circular SHG in monolayer WSe2[59]; (b) interband valley optical selection rules for SHG in 2D TMDCs[59].
    Fig. 5. SHG valley selection rules: (a) Circular polarization-resolved SHG spectra showing the generation of counter-circular SHG in monolayer WSe2[59]; (b) interband valley optical selection rules for SHG in 2D TMDCs[59].
    Electric field modulated SHG: (a) Schematic illustration of bilayer MoS2 microcapacitor device[67]; (b) bilayer MoS2 SHG intensity as the function of applied voltage and SHG emission energy[67]; (c) reversible SHG induced by back gate in bilayer WSe2[66]; (d) optical image of monolayer WSe2 transistor[59]; (e) exciton resonant monolayer WSe2 SHG spectra at selected gate voltage[59]; (f) monolayer WSe2 SHG intensity as the function of applied gate voltage and SHG emission energy[59].
    Fig. 6. Electric field modulated SHG: (a) Schematic illustration of bilayer MoS2 microcapacitor device[67]; (b) bilayer MoS2 SHG intensity as the function of applied voltage and SHG emission energy[67]; (c) reversible SHG induced by back gate in bilayer WSe2[66]; (d) optical image of monolayer WSe2 transistor[59]; (e) exciton resonant monolayer WSe2 SHG spectra at selected gate voltage[59]; (f) monolayer WSe2 SHG intensity as the function of applied gate voltage and SHG emission energy[59].
    Strain modulated SHG: (a) MoSe2 SHG polarization changed by uniaxial tensile strain[26]; (b) uniaxial strain map of MoS2 monolayer flake[75]; (c) schematic illustration (up) and SHG mapping (down) of TiO2/MoS2 structure[77].
    Fig. 7. Strain modulated SHG: (a) MoSe2 SHG polarization changed by uniaxial tensile strain[26]; (b) uniaxial strain map of MoS2 monolayer flake[75]; (c) schematic illustration (up) and SHG mapping (down) of TiO2/MoS2 structure[77].
    Metasurfaces modulated SHG: (a) Schematic illustration of a MoS2-gold phased array antenna steering SHG emission[81]; (b) polar plot of the calculated (line) and measured (points) SH pattern along the intensity maximum when phase delay δx = δy = 0[81]; (c) the SEM image of the fabricated gold metasurface with rectangular nanoholes of different orientation[82]; (d) the experimental results of SHG focusing by using the hybrid metasurfaces[82]; (e) schematic representations of steering second-harmonic waves on RCP pumping with monolayer WS2[79]; (f) evolution of the light field for the case shown in (c), “0” and “1” label the intensity order[79].
    Fig. 8. Metasurfaces modulated SHG: (a) Schematic illustration of a MoS2-gold phased array antenna steering SHG emission[81]; (b) polar plot of the calculated (line) and measured (points) SH pattern along the intensity maximum when phase delay δx = δy = 0[81]; (c) the SEM image of the fabricated gold metasurface with rectangular nanoholes of different orientation[82]; (d) the experimental results of SHG focusing by using the hybrid metasurfaces[82]; (e) schematic representations of steering second-harmonic waves on RCP pumping with monolayer WS2[79]; (f) evolution of the light field for the case shown in (c), “0” and “1” label the intensity order[79].
    SHG enhancement by plasmonics: (a) Nano cavity strongly confines incident light field (up), and SHG enhancement by Ag nanoparticle in monolayer WS2 (down)[92]; (b) compare of SHG signal in different plasmonic array/semiconductor, where points 1, 2, 3 represent the area of nanorod, nanorod/bilayer WSe2, and bilayer WSe2, respectively[93]; (c) SHG enhancement factor over 400 in monolayer WS2 reached by Ag nanogroove grating[94]; (d) SHG enhancement over 3 orders in monolayer WSe2 by plasmonic structure on PDMS[95].
    Fig. 9. SHG enhancement by plasmonics: (a) Nano cavity strongly confines incident light field (up), and SHG enhancement by Ag nanoparticle in monolayer WS2 (down)[92]; (b) compare of SHG signal in different plasmonic array/semiconductor, where points 1, 2, 3 represent the area of nanorod, nanorod/bilayer WSe2, and bilayer WSe2, respectively[93]; (c) SHG enhancement factor over 400 in monolayer WS2 reached by Ag nanogroove grating[94]; (d) SHG enhancement over 3 orders in monolayer WSe2 by plasmonic structure on PDMS[95].
    SHG enhancement by micro cavity and photonic crystal: (a) Enhancement of SHG from monolayer MoS2 in a doubly resonant on-chip optical cavity[100]; (b) enhancement of SHG by silicon waveguide[105]; (c) CW excitation of SHG from GaSe/photonic crystal[106].
    Fig. 10. SHG enhancement by micro cavity and photonic crystal: (a) Enhancement of SHG from monolayer MoS2 in a doubly resonant on-chip optical cavity[100]; (b) enhancement of SHG by silicon waveguide[105]; (c) CW excitation of SHG from GaSe/photonic crystal[106].
    Zhou-Xiao-Song Zeng, Xiao Wang, An-Lian Pan. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement[J]. Acta Physica Sinica, 2020, 69(18): 184210-1
    Download Citation