• Optoelectronics Letters
  • Vol. 19, Issue 1, 20 (2023)
Guidao LIN, Qi CHEN, Jianchao LIU, and Zhenhong and WANG*
Author Affiliations
  • The 723 Research Institute of China Shipbuilding Industry Corporation, Yangzhou 225101, China
  • show less
    DOI: 10.1007/s11801-023-2156-4 Cite this Article
    LIN Guidao, CHEN Qi, LIU Jianchao, and WANG Zhenhong. Numerical study on a frequency-tunable actively mode-locked fiber laser[J]. Optoelectronics Letters, 2023, 19(1): 20 Copy Citation Text show less
    References

    [1] LI C H, BENEDICK A J, FENDEL P, et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm·s-1[J]. Nature, 2008, 452(7187):610-612.

    [2] RUEHL A, MARCINKEVICIUS A, FERMANN M E, et al. 80 W, 120 fs Yb-fiber frequency comb[J]. Optics letters, 2010, 35(18):3015-3017.

    [3] NAKAZAWA M, YOSHIDA M, HIROOKA T. The Nyquist laser[J]. Optica, 2014, 1(1):15-22.

    [4] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950):831-838.

    [5] TAKARA H, KAWANISHI S, SARUWATARI M, et al. Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er3+-doped fibre lasers with an all-polarisation maintaining ring cavity[J]. Electronics letters, 1992, 28(22):2095-2096.

    [6] KAMBA Y, TEI K, YAMAGUCHI S, et al. Efficient UV generation of a Yb-fiber MOPA producing high peak power for pulse durations of from 100 ps to 2 ns[J]. Optics express, 2013, 21(22):25864-25873.

    [7] DELFYETT P J, GEE S, CHOI M T, et al. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications[J]. Journal of lightwave technology, 2006, 24(7):2701-2719.

    [8] KALAYCIOGLU H, ELAHI P, O A, et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE journal of selected topics in quantum electronics, 2018, 24(3):1-12.

    [9] LI X, JIN L, WANG R, et al. GHz-level all-fiber harmonic mode-locked laser based on microfiber-assisted nonlinear multimode interference[J]. Optics and laser technology, 2022, 155:108367.

    [10] TANG D Y, ZHAO L M, ZHAO B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical review A, 2005, 72(4):043816.

    [11] MA X, ZHENG Z, YE S, et al. 2 μm sub-GHz harmonic mode-locked soliton generation based on a Bi2S3 saturable absorber[J]. Optics express, 2022, 30(2): 2278-2287.

    [12] LECAPLAIN C, GRELU P. Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser[J]. Optics express, 2013, 21(9): 10897-10902.

    [13] WANG R, DAI Y, YAN L, et al. Dissipative soliton in actively mode-locked fiber laser[J]. Optics express, 2012, 20(6):6406-6411.

    [14] WANG R, DAI Y, YIN F, et al. High-repetition-rate, stretch-lens-based actively-mode-locked femtosecond fiber laser[J]. Optics express, 2013, 21(18):20923-20930.

    [15] XU Q, LIU F, GAO Z, et al. Actively Q-switched and mode-locked all-fiber lasers with an α-BaTeMo2O9-based acousto-optical modulator[J]. Applied optics, 2021, 60(35):10838-10842.

    [16] YAO G, ZHAO Z, LIU Z, et al. High repetition rate actively mode-locked Er:fiber laser with tunable pulse duration[J]. Chinese optics letters, 2022, 20(7):071402.

    [17] TANG M, TIAN X L, SHUM P, et al. Four-wave mixing assisted self-stable 4×10 GHz actively mode-locked erbium fiber ring laser[J]. Optics express, 2006, 14(5):1726-1730.

    [18] AGRAWAL G. Nonlinear fiber optics[M]. 3rd ed. New York:Academic Press, 2001:39-51.

    [19] CHERNIKOV S V, RICHARDSON D J, DIANOV E, et al. Picosecond soliton pulse compressor based on dispersion decreasing fibre[J]. Electronics letters, 1992, 28(19):1842-1844.

    [20] XU Z, LUO X, FU K, et al. Dissipative soliton trapping in an all normal dispersion mode-locked Yb-doped fiber laser[J]. IEEE photonics technology letters, 2017, 29(15):1225-1228.

    [21] MAO D, ZHANG S, WANG Y, et al. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 μm[J]. Optics express, 2015, 23(21) : 27509-27519.

    [22] DU J, WANG Q, JIANG G, et al. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction[J]. Scientific reports, 2014, 4(1):6346.

    LIN Guidao, CHEN Qi, LIU Jianchao, and WANG Zhenhong. Numerical study on a frequency-tunable actively mode-locked fiber laser[J]. Optoelectronics Letters, 2023, 19(1): 20
    Download Citation