• Photonics Research
  • Vol. 12, Issue 6, 1222 (2024)
Xingxing Guo1, Hanxu Zhou1, Shuiying Xiang1,2,*, Qian Yu1..., Yahui Zhang1,2, Yanan Han1, Tao Wang1 and Yue Hao2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
  • 2State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
  • show less
    DOI: 10.1364/PRJ.517275 Cite this Article Set citation alerts
    Xingxing Guo, Hanxu Zhou, Shuiying Xiang, Qian Yu, Yahui Zhang, Yanan Han, Tao Wang, Yue Hao, "Short-term prediction for chaotic time series based on photonic reservoir computing using VCSEL with a feedback loop," Photonics Res. 12, 1222 (2024) Copy Citation Text show less
    References

    [1] K.-J. Wu, T.-J. Wang. Prediction of chaotic time series based on RBF neural network optimization. Comput. Eng., 39, 207-208(2021).

    [2] B. T. Nadiga. Reservoir computing as a tool for climate predictability studies. J. Adv. Model. Earth Syst., 13, e2020MS002290(2021).

    [3] https://egusphere.net/conferences/EGU21/US/index.html. https://egusphere.net/conferences/EGU21/US/index.html

    [4] P. D. Dueben, P. Bauer. Challenges and design choices for global weather and climate models based on machine learning. Geosci. Model Develop., 11, 3999-4009(2018).

    [5] S. Scher. Toward data-driven weather and climate forecasting: approximating a simple general circulation model with deep learning. Geophys. Res. Lett., 45, 616-622(2018).

    [6] M. Hassanaly, V. Raman. Ensemble-LES analysis of perturbation response of turbulent partially premixed flames. Proc. Combust. Inst., 37, 2249-2257(2019).

    [7] G. Nastac, J. W. Labahn, L. Magri. Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids, 2, 094606(2017).

    [8] S. Shahi, C. D. Marcotte, C. J. Herndon. Long-time prediction of arrhythmic cardiac action potentials using recurrent neural networks and reservoir computing. Front. Physiol., 12, 734178(2021).

    [9] T. Babaie, R. Karimizandi, C. Lucas. Learning based brain emotional intelligence as a new aspect for development of an alarm system. Soft Comput., 12, 857-873(2008).

    [10] A. Uchida, K. Amano, M. Inoue. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics, 2, 728-732(2008).

    [11] I. Reidler, Y. Aviad, M. Rosenbluh. Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Phys. Rev. Lett., 103, 024102(2009).

    [12] I. Kanter, Y. Aviad, I. Reidler. An optical ultrafast random bit generator. Nat. Photonics, 4, 58-61(2010).

    [13] T. Deng, G. Q. Xia, Z. M. Wu. Broadband chaos synchronization and communication based on mutually coupled VCSELs subject to a bandwidth-enhanced chaotic signal injection. Nonlin. Dyn., 76, 399-407(2014).

    [14] W. Cai, S. Xiang, X. Cao. Experimental investigation of the time-delay signature of chaotic output and dual-channel physical random bit generation in 1550 nm mutually coupled VCSELs with common FBG filtered feedback. Appl. Opt., 59, 4583-4588(2020).

    [15] N. Jiang, Y. Wang, A. Zhao. Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators. Opt. Express, 28, 1999-2009(2020).

    [16] A. Zhao, N. Jiang, J. Peng. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron. Adv., 5, 200026(2022).

    [17] Y. Zeng, P. Zhou, Y. Huang. Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs. Opt. Express, 31, 948-963(2023).

    [18] H. J. Yang, X. Hu. Wavelet neural network with improved genetic algorithm for traffic flow time series prediction. Optik, 127, 8103-8110(2016).

    [19] Z. D. Tian, X. W. Gao, S. Tong. Combination Kernel function least squares support vector machine for chaotic time series prediction. Acta Phys. Sinica, 63, 160508(2014).

    [20] A. C. Baker, C. Toque. A review of the potential for radium from luminising activities to migrate in the environment. J. Radiol. Prot., 25, 127(2005).

    [21] M. Sangiorgio. Robustness of LSTM neural networks for multi-step forecasting of chaotic time series. Chaos Solitons Fractals, 139, 110045(2020).

    [22] H. Akaike. Fitting autoregressive models for prediction. Ann. Inst. Stat. Math., 21, 243-247(1969).

    [23] L.-H. Shen, J.-H. Chen, Z.-G. Zeng. Chaotic time series prediction based on robust extreme learning machine. Acta Phys. Sinica, 67, 030501(2018).

    [24] L. L. Guo. Optimizing parameters of support vector machine’s model based on genetic algorithm. Comput. Eng. Appl., 29, 5016-5018(2008).

    [25] X. J. Yan, R. X. Gong, Q. F. Zhang. Application of optimization SVM based on improved genetic algorithm in short-term wind speed prediction. Power Syst. Prot. Control, 44, 38-42(2016).

    [26] K. Vandoorne, P. Mechet, T. V. Vaerenbergh. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun., 5, 4541(2014).

    [27] L. Appeltant, M. C. Soriano, G. Van der Sande. Information processing using a single dynamical node as complex system. Nat. Commun., 2, 468(2011).

    [28] R. M. Nguimdo, T. J. O. L. Erneux. Enhanced performances of a photonic reservoir computer based on a single delayed quantum cascade laser. Opt. Lett., 44, 49-52(2019).

    [29] Q. Cai, Y. Guo, P. Li. Modulation format identification in fiber communications using single dynamical node-based photonic reservoir computing. Photon. Res., 9, B1-B8(2021).

    [30] Y. W. Shen, R. Q. Li, G. T. Liu. Deep photonic reservoir computing recurrent network. Optica, 10, 1745-1751(2023).

    [31] K. Takano, C. Sugano, M. Inubushi. Compact reservoir computing with a photonic integrated circuit. Opt. Express, 26, 29424-29439(2018).

    [32] T. Weng, H. Yang, C. Gu. Synchronization of chaotic systems and their machine-learning models. Phys. Rev. E, 99, 042203(2019).

    [33] Y. Kuriki, J. Nakayama, K. Takano. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Opt. Express, 26, 5777-5788(2018).

    [34] J. Bueno, S. Maktoobi, L. Froehly. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 5, 756-760(2018).

    [35] Y. Huang, P. Zhou, Y. G. Yang. Enhanced performance of reservoir computing using multiple self-injection and mutual injection VCSELs. IEEE J. Sel. Top. Quantum Electron., 29, 1700109(2022).

    [36] X. X. Guo, S. Y. Xiang, C. X. Yu. Experimental and numerical demonstration of the hierarchical time delay reservoir computing based on cascaded VCSELs with feedback and multiple injection. Sci. China Inf. Sci., 67, 122403(2024).

    [37] R. Martinenghi, S. Rybalko, M. Jacquot. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys. Rev. Lett., 108, 244101(2012).

    [38] J. Martin-Regalado, F. Prati, M. San Miguel. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 33, 765-783(1997).

    [39] H. Zhang, S. Xiang, Y. Zhang. Complexity-enhanced polarization-resolved chaos in a ring network of mutually coupled vertical-cavity surface-emitting lasers with multiple delays. Appl. Opt., 56, 6728-6734(2017).

    [40] K. Kanno, A. Uchida, M. Bunsen. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback. Phys. Rev. E, 93, 032206(2016).

    [41] J. Wu, S. W. Huang, Y. Huang. Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators. Nat. Commun., 8, 15570(2017).

    [42] N. Li, W. Pan, S. Xiang. Quantifying the complexity of the chaotic intensity of an external-cavity semiconductor laser via sample entropy. IEEE J. Quantum Electron., 50, C1(2014).

    [43] L. Zunino, O. A. Rosso, M. C. Soriano. Characterizing the hyperchaotic dynamics of a semiconductor laser subject to optical feedback via permutation entropy. IEEE J. Sel. Top. Quantum Electron., 17, 1250-1257(2011).

    [44] J. P. Toomey, A. Argyris, C. McMahon. Time-scale independent permutation entropy of a photonic integrated device. J. Lightwave Technol., 35, 88-95(2016).

    [45] R. M. Nguimdo, G. Verschaffelt, J. Danckaert. Simultaneous computation of two independent tasks using reservoir computing based on a single photonic nonlinear node with optical feedback. IEEE Trans. Neural Netw. Learn. Syst., 26, 3301-3307(2015).

    [46] X. X. Guo, S. Y. Xiang, Y. H. Zhang. Information-theory-based complexity quantifier for chaotic semiconductor laser with double time delays. IEEE J. Quantum Electron., 54, 2000308(2018).

    [47] X. X. Guo, S. Y. Xiang, Y. H. Zhang. Polarization multiplexing reservoir computing based on a VCSEL with polarized optical feedback. IEEE J. Sel. Top. Quantum Electron., 26, 1700109(2019).

    Xingxing Guo, Hanxu Zhou, Shuiying Xiang, Qian Yu, Yahui Zhang, Yanan Han, Tao Wang, Yue Hao, "Short-term prediction for chaotic time series based on photonic reservoir computing using VCSEL with a feedback loop," Photonics Res. 12, 1222 (2024)
    Download Citation