• Optics and Precision Engineering
  • Vol. 31, Issue 4, 429 (2023)
Shanjing CHEN1,2,5, Wenjuan ZHANG3,*, Bing ZHANG3,4, Qing KANG5, and Xu XU5
Author Affiliations
  • 1Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing00094, China
  • 2International Research Center of Big Data for Sustainable Development Goals, Beijing100094, China
  • 3Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing100094, China
  • 4University of Chinese Academy of Sciences, Beijing10009, China
  • 5Army Logistics University, Chongqing401311, China
  • show less
    DOI: 10.37188/OPE.20233104.0429 Cite this Article
    Shanjing CHEN, Wenjuan ZHANG, Bing ZHANG, Qing KANG, Xu XU. Research on method of surface reflectance reconstruction in the Tibetan Plateau based on MODIS data[J]. Optics and Precision Engineering, 2023, 31(4): 429 Copy Citation Text show less
    References

    [1] HONGBO, ZHANG, HONGBO, ZHANG. Creating 1-km long-term (1980-2014) daily average air temperatures over the Tibetan Plateau by integrating eight types of reanalysis and land data assimilation products downscaled with MODIS-estimated temperature lapse rates based on machine learning. International Journal of Applied Earth Observation and Geoinformation, 97, 102295(2021).

    [2] 2王兴玲, 刘龙飞, 于钢, 等. 全球陆地光学遥感影像获取技术与应用[J]. 光学 精密工程, 2012, 20(10): 2324-2330. doi: 10.3788/ope.20122010.2324WANGX L, LIUL F, YUG, et al. Global optical image acquisition technology and its applications[J]. Opt. Precision Eng., 2012, 20(10): 2324-2330.(in Chinese). doi: 10.3788/ope.20122010.2324

    [3] M XIA, K JIA. Reconstructing missing information of remote sensing data contaminated by large and thick clouds based on an improved multitemporal dictionary learning method. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).

    [4] Y ANGEL, R HOUBORG, M F MCCABE. Reconstructing cloud contaminated pixels using spatiotemporal covariance functions and multitemporal hyperspectral imagery. Remote Sensing, 11, 1145(2019).

    [5] Z Q XIAO, S L LIANG, X D TIAN et al. Reconstruction of long-term temporally continuous NDVI and surface reflectance from AVHRR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10, 5551-5568(2017).

    [6] Y H WU, M R LI, L N GUO et al. Investigating water variation of lakes in Tibetan Plateau using remote sensed data over the past 20 years. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 2557-2564(2019).

    [7] D CH TSENG, H T TSENG, CH L CHIEN. Automatic cloud removal from multi-temporal SPOT images. Applied Mathematics and Computation, 205, 584-600(2008).

    [8] QING, CHENG, QING, CHENG. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 54-68(2014).

    [9] Y X WANG, W J ZHANG, S J CHEN et al. Rapidly single-temporal remote sensing image cloud removal based on land cover data, 3307-3310(2022).

    [10] Y J ZHANG, F WEN, Z GAO et al. A coarse-to-fine framework for cloud removal in remote sensing image sequence. IEEE Transactions on Geoscience and Remote Sensing, 57, 5963-5974(2019).

    [11] QIANG, ZHANG, QIANG, ZHANG. Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 148-160(2020).

    [12] 12申茜, 姚月, 李利伟, 等. 北京市平原区2015年—2019年0.8 m地表反射率数据集[J]. 遥感学报, 2021, 25(11): 2303-2312.SHENQ, YAOY, LIL W, et al. Annual 0.8 m surface reflectance data set of Beijing plain area from 2015 to 2019[J]. National Remote Sensing Bulletin, 2021, 25(11): 2303-2312.(in Chinese)

    [13] 13孙华生, 张远, 史云飞, 等. 利用无人机搭载的多光谱相机直接测定地表反射率的新方法[J]. 光谱学与光谱分析, 2022, 42(5): 1581-1587. doi: 10.3964/j.issn.1000-0593(2022)05-1581-07SUNH SH, ZHANGY, SHIY F, et al. A new method for direct measurement of land surface reflectance with UAV-based multispectral cameras[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1581-1587.(in Chinese). doi: 10.3964/j.issn.1000-0593(2022)05-1581-07

    [14] 14何兴伟, 胡秀清, 何灵莉, 等. 我国西北部沙漠定标场网的地表反射率光谱特征模型[J]. 光学学报, 2022, 42(6): 249-258. doi: 10.3788/AOS202242.0628003HEX W, HUX Q, HEL L, et al. Surface reflectance spectral characteristic model of desert calibration site network in northwest China[J]. Acta Optica Sinica, 2022, 42(6): 249-258.(in Chinese). doi: 10.3788/AOS202242.0628003

    [15] 15徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程, 2021, 29(4): 916-931. doi: 10.37188/OPE.2020.0419XUF, LIUJ H, SUNH, et al. Research progress on vessel detection using optical remote sensing image[J]. Opt. Precision Eng., 2021, 29(4): 916-931.(in Chinese). doi: 10.37188/OPE.2020.0419

    [16] ANDREA, MERANER, ANDREA, MERANER. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 166, 333-346(2020).

    [17] 17车向红, 冯敏, 姜浩, 等. 2000—2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015, 17(1): 99-107. doi: 10.3724/SP.J.1047.2015.00099CHEX H, FENGM, JIANGH, et al. Detection and analysis of Qinghai-Tibet Plateau Lake area from 2000 to 2013[J]. Journal of Geo-Information Science, 2015, 17(1): 99-107.(in Chinese). doi: 10.3724/SP.J.1047.2015.00099

    [18] 18赵凤美, 戴聪明, 魏合理, 等. 基于MODIS云参数的卷云反射率计算研究[J]. 红外与激光工程, 2018, 47(9): 270-276. doi: 10.3788/irla201847.0917006ZHAOF M, DAIC M, WEIH L, et al. Calculating the reflectance of cirrus clouds based on cirrus properties from MODIS[J]. Infrared and Laser Engineering, 2018, 47(9): 270-276.(in Chinese). doi: 10.3788/irla201847.0917006

    [19] 19辛蕾, 李峰, 鲁啸天, 等. 面向光学遥感影像的高效编码与重构[J]. 光学 精密工程, 2021, 29(12): 2956-2963. doi: 10.37188/OPE.20212912.2956XINL, LIF, LUX T, et al. Efficient coding and reconstruction for optical remote sensing images[J]. Opt. Precision Eng., 2021, 29(12): 2956-2963.(in Chinese). doi: 10.37188/OPE.20212912.2956

    Shanjing CHEN, Wenjuan ZHANG, Bing ZHANG, Qing KANG, Xu XU. Research on method of surface reflectance reconstruction in the Tibetan Plateau based on MODIS data[J]. Optics and Precision Engineering, 2023, 31(4): 429
    Download Citation